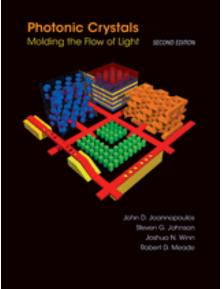
Photonic Crystals: A Crash Course in Designer Electromagnetism

Steven G. Johnson MIT Applied Mathematics

Free Materials Online



Photonic Crystals book: jdj.mit.edu/book

Tutorial slides: jdj.mit.edu/photons/tutorial

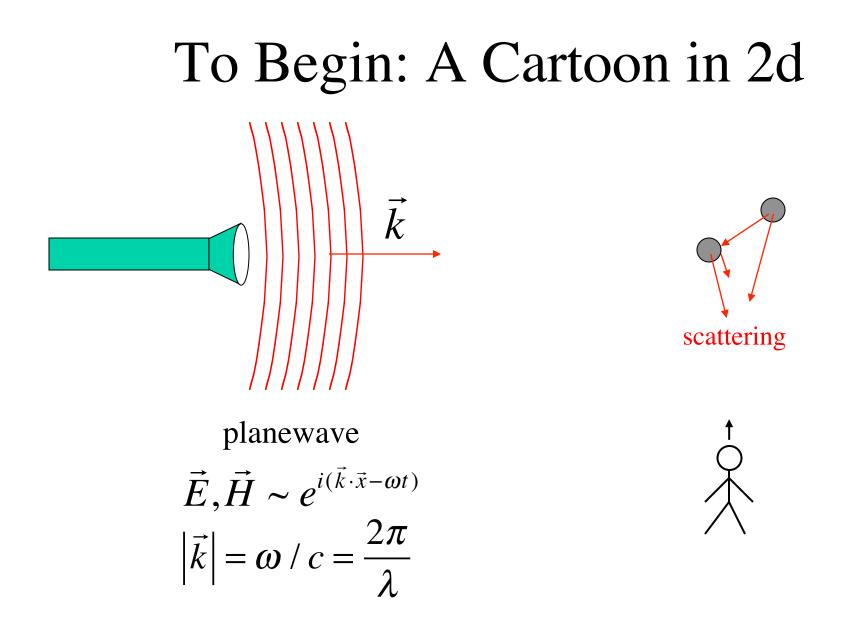
Free electromagnetic simulation software (FDTD, mode solver, etc.) jdj.mit.edu/wiki

Outline

- Preliminaries: waves in periodic media
- Photonic crystals in theory and practice
- Bulk crystal properties
- Intentional defects and devices
- Index-guiding and incomplete gaps
- Photonic-crystal fibers
- Perturbations, tuning, and disorder

Outline

- Preliminaries: waves in periodic media
- Photonic crystals in theory and practice
- Bulk crystal properties
- Intentional defects and devices
- Index-guiding and incomplete gaps
- Photonic-crystal fibers
- Perturbations, tuning, and disorder



small particles: Lord Rayleigh (1871) ... Waves Can Scatter why the sky is blue

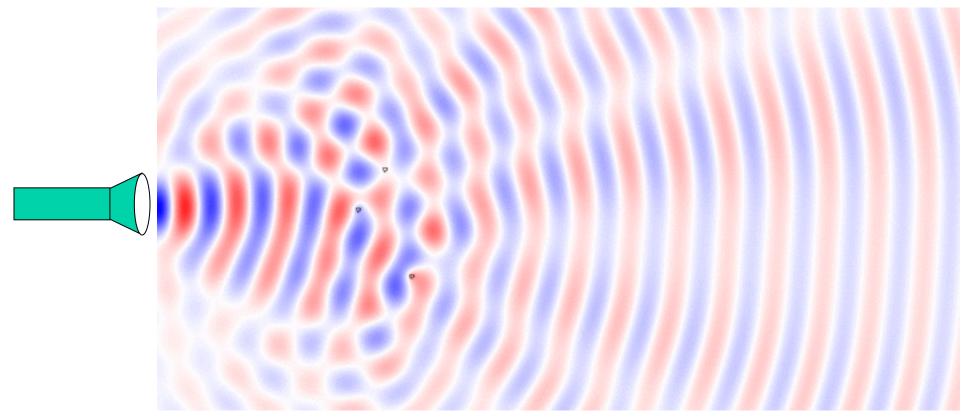
here: a little circular speck of silicon

checkerboard pattern: interference of waves
 traveling in different directions

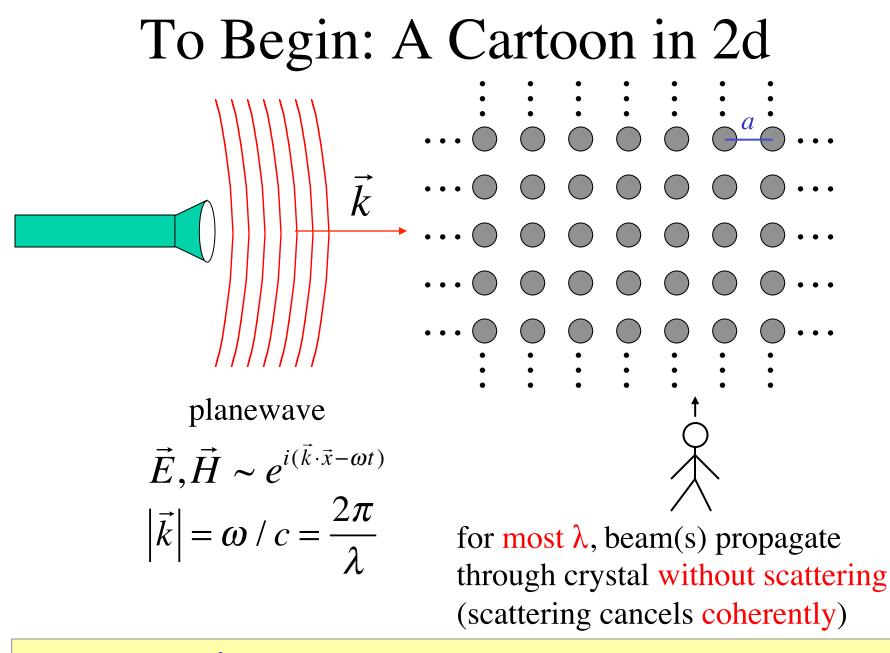
scattering by spheres: solved by Gustave Mie (1908)

Multiple Scattering is Just Messier?

here: scattering off three specks of silicon

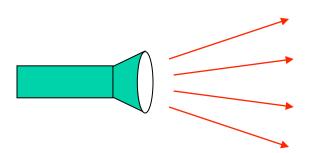


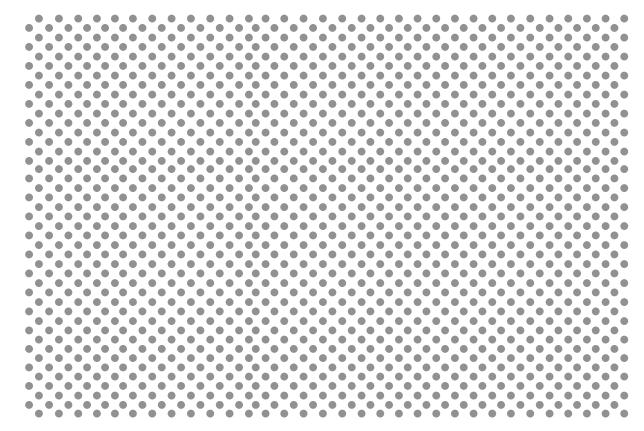
can be solved on a computer, but not terribly interesting...



...but for some λ (~ 2*a*), no light can propagate: a photonic band gap

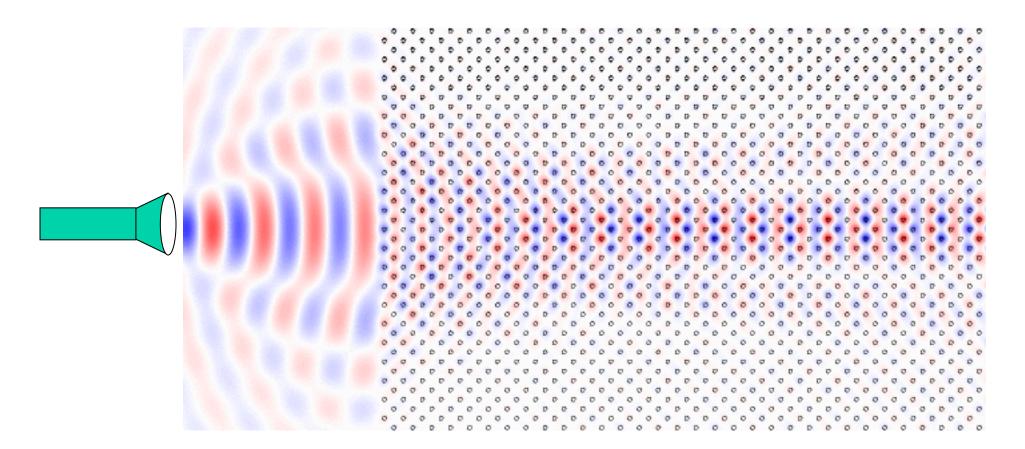
An even bigger mess? zillons of scatterers





Blech, light will just scatter like crazy and go all over the place ... how boring!

Not so messy, not so boring...



the light seems to form several *coherent beams* that propagate *without scattering* ... and almost *without diffraction* (*supercollimation*)

...the magic of symmetry...

[Emmy Noether, 1915]

Noether's theorem: symmetry = conservation laws

In this case, periodicity = conserved "momentum" = wave solutions without scattering

[Bloch waves]

Felix Bloch (1928)

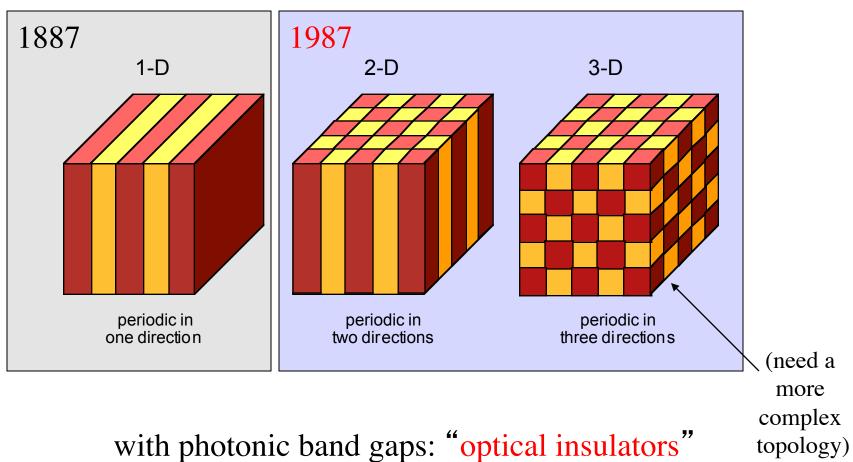
A slight change? Shrink I by 20% *an "optical insulator" (photonic bandgap)*



light cannot penetrate the structure at this wavelength! all of the scattering destructively interferes

Photonic Crystals

periodic electromagnetic media

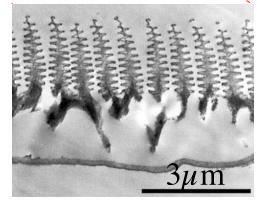


Photonic Crystals in Nature

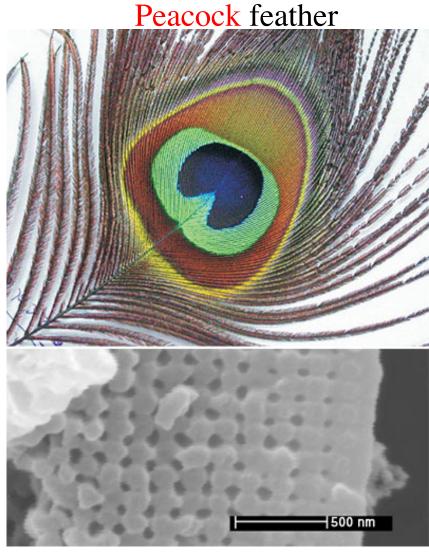
Morpho rhetenor butterfly

wing scale:

[P. Vukosic *et al.*, *Proc. Roy. Soc: Bio. Sci.* **266**, 1403 (1999)]



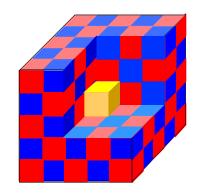
[also: B. Gralak et al., Opt. Express 9, 567 (2001)]

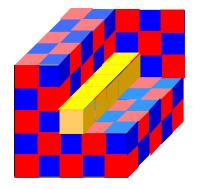


[J. Zi *et al*, *Proc. Nat. Acad. Sci. USA*, **100**, 12576 (2003)] [figs: Blau, *Physics Today* **57**, 18 (2004)]

Photonic Crystals

periodic electromagnetic media





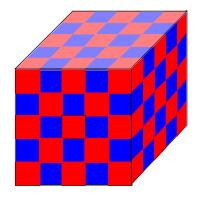
can trap light in cavities

and waveguides ("wires")

with photonic band gaps: "optical insulators" for holding and controlling light

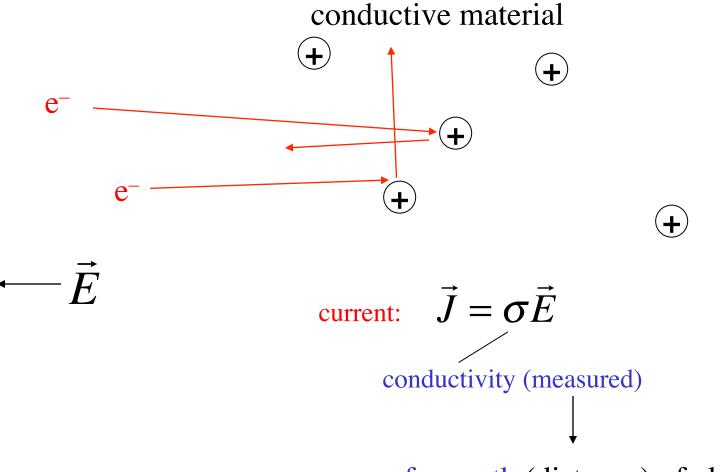
Photonic Crystals

periodic electromagnetic media



But how can we understand such complex systems? Add up the infinite sum of scattering? Ugh!

A mystery from the 19th century



mean free path (distance) of electrons

A mystery from the 19th century

crystalline conductor (e.g. copper) $(\mathbf{\dot{+}})$ $(\mathbf{+})$ (+)(+) $(\mathbf{+})$ (+) $(\mathbf{+})$ (+)10' s e $(\mathbf{+})$ (+) $(\mathbf{+})$ (+)(+)(+) $(\mathbf{+})$ of **+**) periods! $(\mathbf{+})$ (+)(+)(+) $(\mathbf{+})$ $(\mathbf{+})$ $(\mathbf{+})$ (+)e $(\mathbf{+})$ $(\mathbf{+})$ $(\mathbf{+})$ (+)(+) $(\mathbf{+})$ $(\mathbf{+})$ (+)Fcurrent: $\vec{J} = \sigma \vec{E}$ conductivity (measured)

mean free path (distance) of electrons

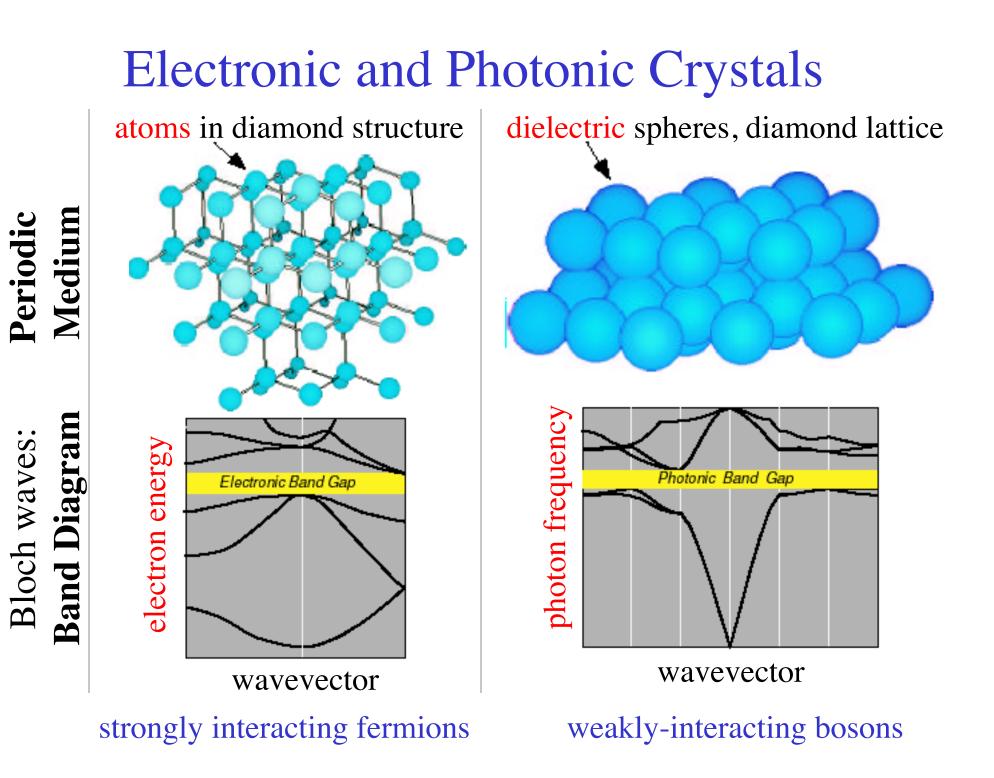
A mystery solved...

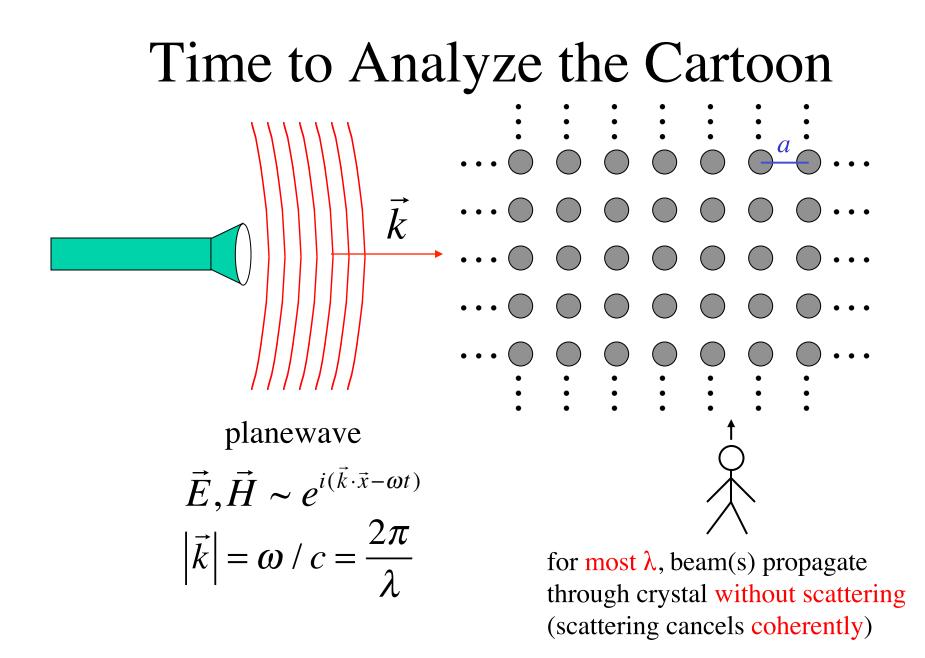
1 electrons are waves (quantum mechanics)

2 ves in a periodic medium can propagate without scattering:

Bloch's Theorem (1d: Floquet's)

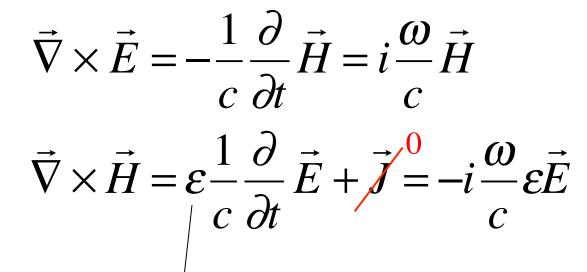
The foundations do not depend on the specific wave equation.





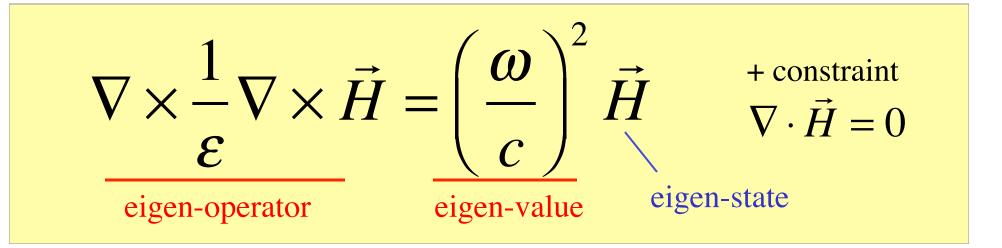
...but for some λ (~ 2*a*), no light can propagate: a photonic band gap

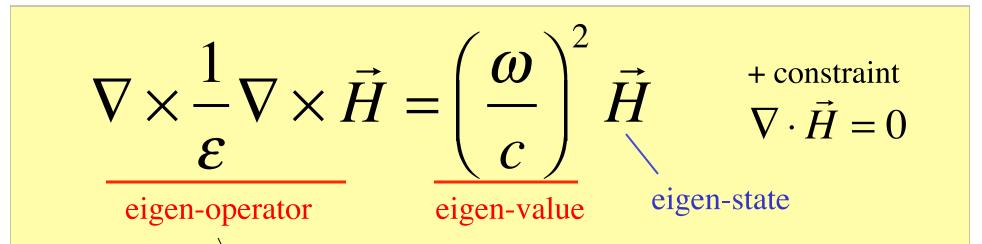
Fun with Math



First task: get rid of this mess

dielectric function $\varepsilon(\mathbf{x}) = n^2(\mathbf{x})$





Hermitian for real (lossless) ϵ

well-known properties from linear algebra:

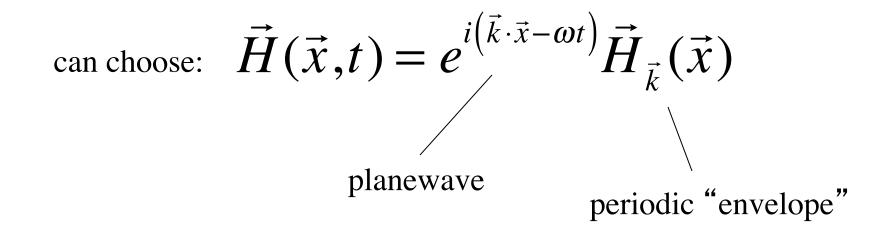
ω are real (lossless)
 eigen-states are orthogonal
 eigen-states are complete (give all solutions)*

* Technically, completeness requires slightly more than just Hermitian-ness.

Periodic Hermitian Eigenproblems

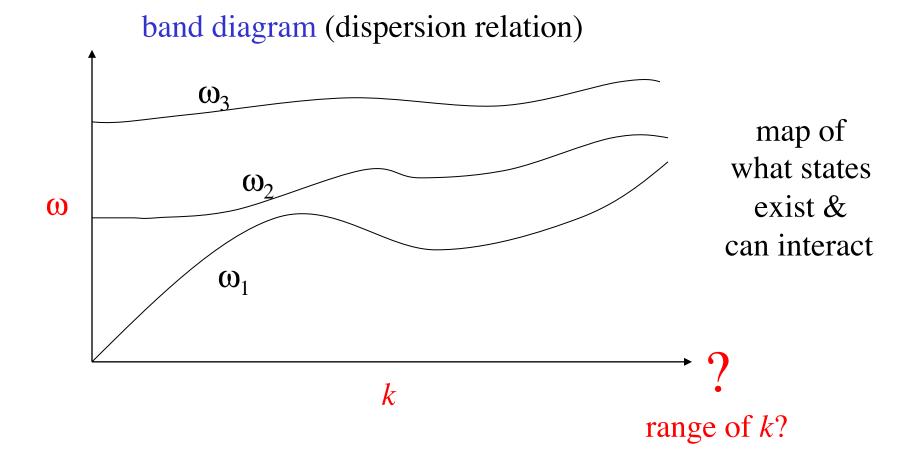
[G. Floquet, "Sur les équations différentielles linéaries à coefficients périodiques," Ann. École Norm. Sup. **12**, 47–88 (1883).] [F. Bloch, "Über die quantenmechanik der electronen in kristallgittern," Z. Physik **52**, 555–600 (1928).]

if eigen-operator is periodic, then Bloch-Floquet theorem applies:



Corollary 1: **k** is conserved, *i.e.* no scattering of Bloch wave Corollary 2: $\vec{H}_{\vec{k}}$ given by finite unit cell, $\circ \circ \circ$ so ω are discrete $\omega_n(\mathbf{k})$

Periodic Hermitian Eigenproblems Corollary 2: $\vec{H}_{\vec{k}}$ given by finite unit cell, so ω are discrete $\omega_n(\mathbf{k})$



Periodic Hermitian Eigenproblems in 1d

$$H(x) = e^{ikx}H_k(x)$$

$$i = e^{ikx}H_k(x)$$

$$i = e^{ikx}H_k(x)$$

$$i = e^{i(k+\frac{2\pi}{a})x}H_{k+\frac{2\pi}{a}}(x) = e^{ikx}\left[e^{i\frac{2\pi}{a}x}H_{k+\frac{2\pi}{a}}(x)\right]$$

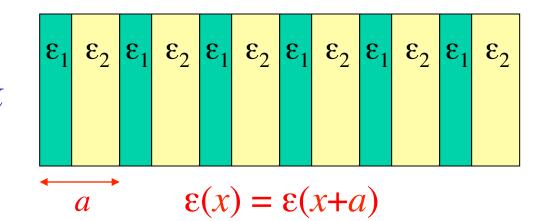
a

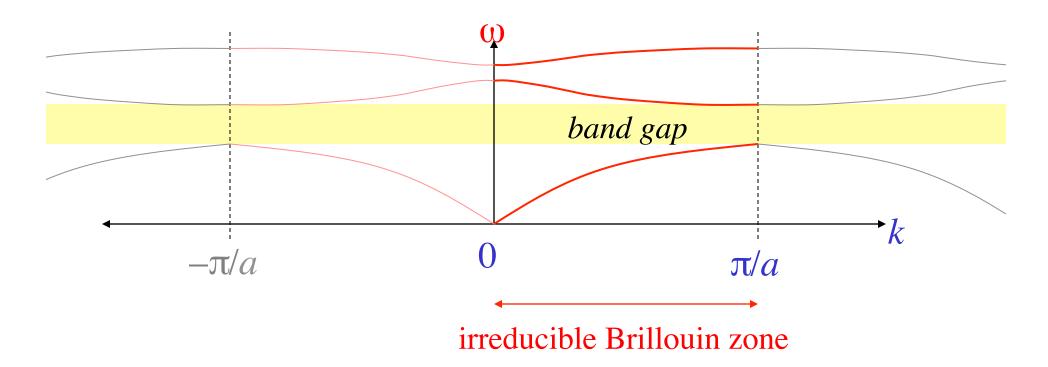
k is periodic: $k + 2\pi/a$ equivalent to *k* "quasi-phase-matching" periodic! satisfies same equation as H_k $= H_k$

a

Periodic Hermitian Eigenproblems in 1d

k is periodic: $k + 2\pi/a$ equivalent to *k* "quasi-phase-matching"

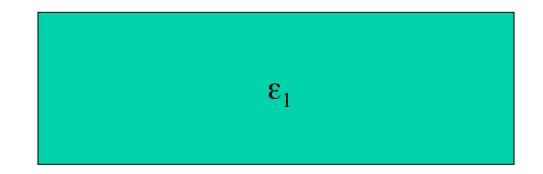


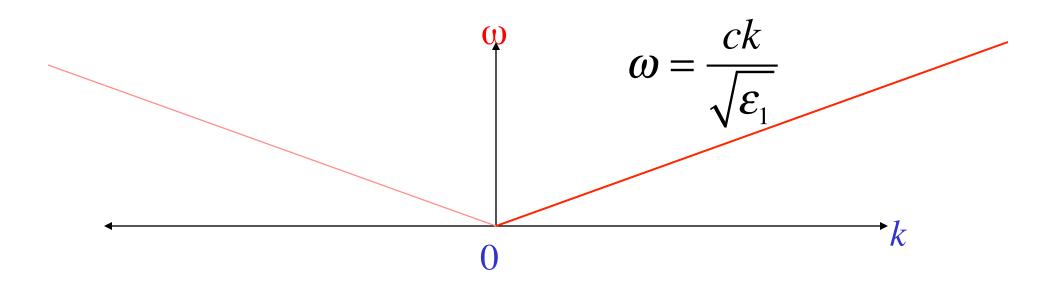


Any 1d Periodic System has a Gap

[Lord Rayleigh, "On the maintenance of vibrations by forces of double frequency, and on the propagation of waves through a medium endowed with a periodic structure," *Philosophical Magazine* **24**, 145–159 (1887).]

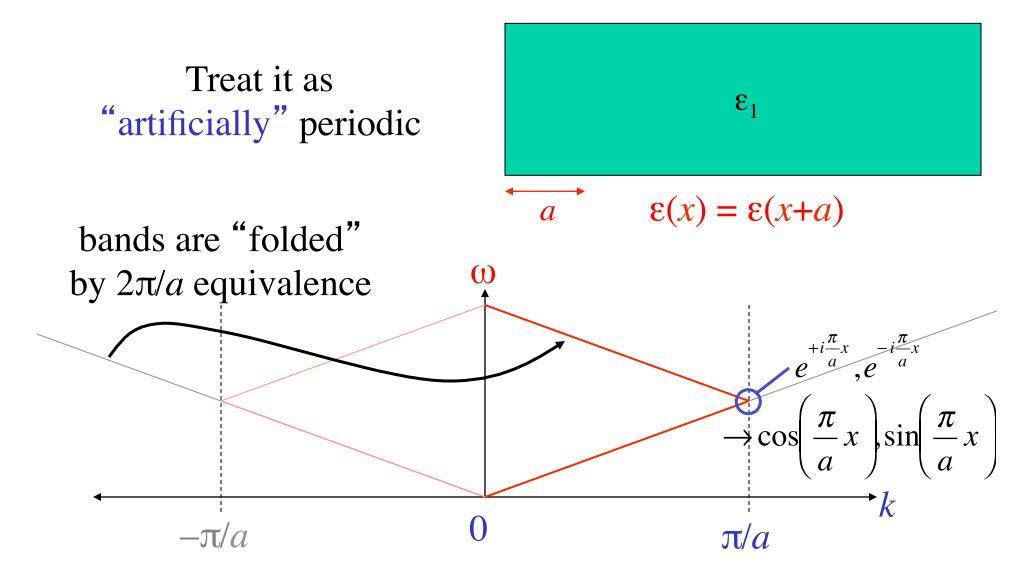
Start with a uniform (1d) medium:





Any 1d Periodic System has a Gap

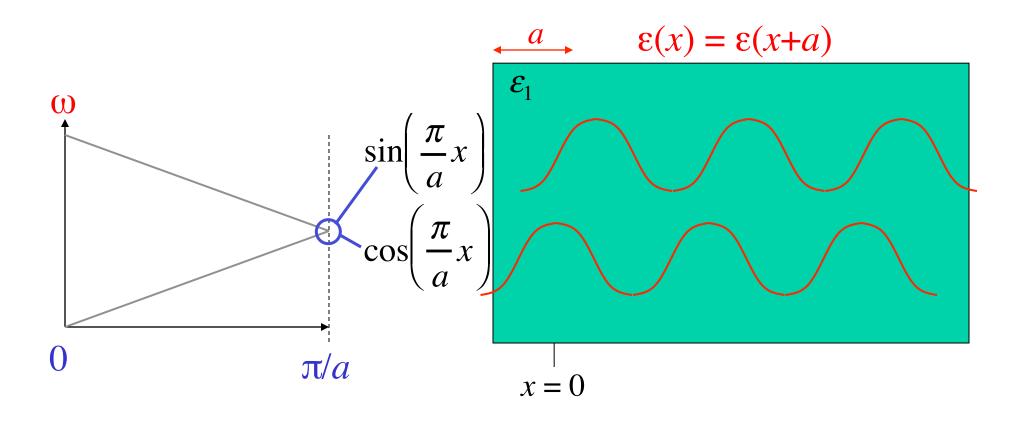
[Lord Rayleigh, "On the maintenance of vibrations by forces of double frequency, and on the propagation of waves through a medium endowed with a periodic structure," *Philosophical Magazine* **24**, 145–159 (1887).]



Any 1d Periodic System has a Gap

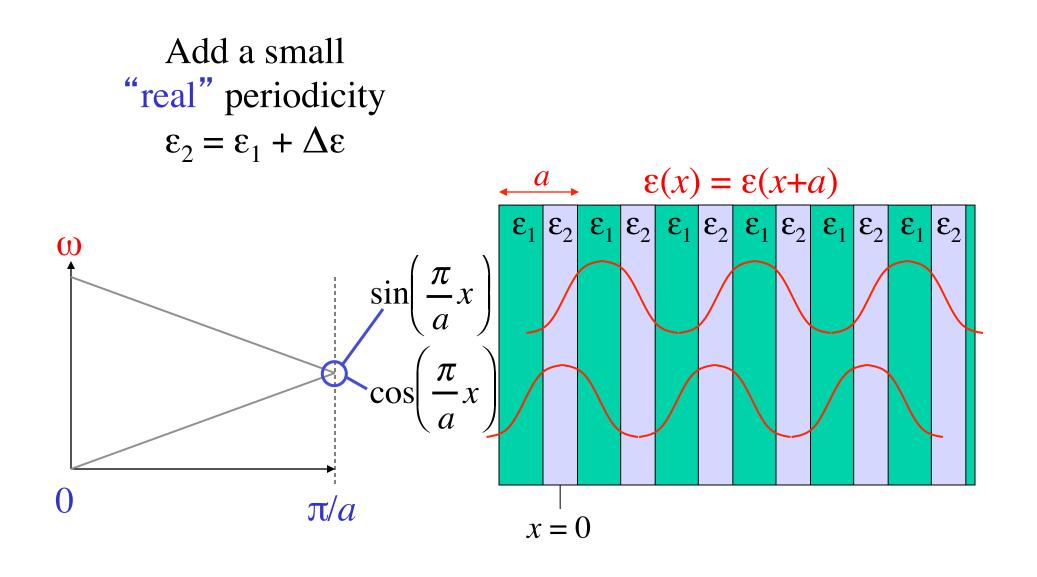
[Lord Rayleigh, "On the maintenance of vibrations by forces of double frequency, and on the propagation of waves through a medium endowed with a periodic structure," *Philosophical Magazine* **24**, 145–159 (1887).]

Treat it as "artificially" periodic



Any 1d Periodic System has a Gap

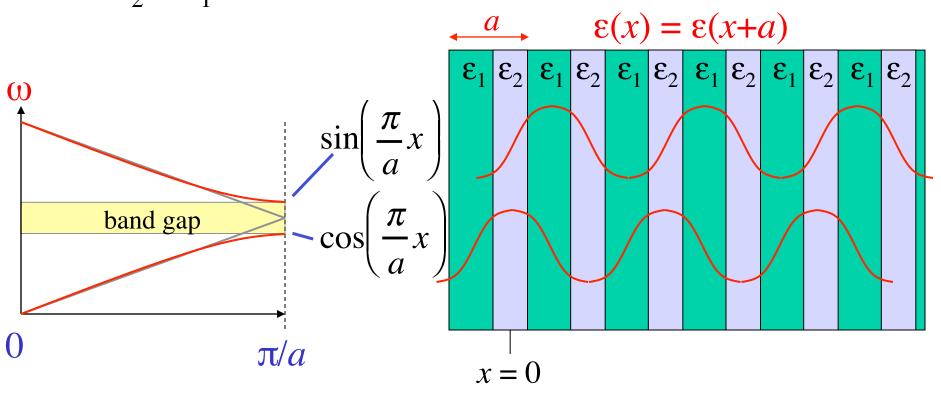
[Lord Rayleigh, "On the maintenance of vibrations by forces of double frequency, and on the propagation of waves through a medium endowed with a periodic structure," *Philosophical Magazine* **24**, 145–159 (1887).]



Any 1d Periodic System has a Gap

[Lord Rayleigh, "On the maintenance of vibrations by forces of double frequency, and on the propagation of waves through a medium endowed with a periodic structure," *Philosophical Magazine* **24**, 145–159 (1887).]

Add a small "real" periodicity $\varepsilon_2 = \varepsilon_1 + \Delta \varepsilon$ Splitting of degeneracy: state concentrated in higher index (ε_2) has lower frequency



Some 2d and 3d systems have gaps

• In general, eigen-frequencies satisfy Variational Theorem:

$$\omega_{1}(\vec{k})^{2} = \min_{\substack{\vec{E}_{1}\\\nabla\cdot\varepsilon\vec{E}_{1}=0}} \frac{\int \left| \left(\nabla + i\vec{k} \right) \times \vec{E}_{1} \right|^{2} \quad \text{``kinetic''}}{\int \varepsilon \left| \vec{E}_{1} \right|^{2} \quad c^{2}}$$

inverse
"potential"

 $\omega_2(\vec{k})^2 = \min_{\substack{\vec{E}_2 \\ \nabla \cdot \varepsilon \vec{E}_2 = 0}} "\cdots" \text{ bands "want" to be in high-}\varepsilon$ $\nabla \cdot \varepsilon \vec{E}_2 = 0$ $\int \varepsilon E_1^* \cdot E_2 = 0 \dots \text{ but are forced out by orthogonality}$ $\Rightarrow \text{ band gap (maybe)}$

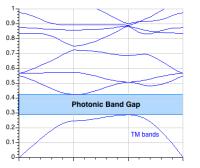
A 2d Model System a

Square lattice of dielectric rods ($\epsilon = 12 \sim Si$) in air ($\epsilon = 1$)

Solving the Maxwell Eigenproblem

Finite cell \rightarrow *discrete* eigenvalues ω_n

Want to solve for $\omega_n(\mathbf{k})$, & plot vs. "all" **k** for "all" *n*,



$$(\nabla + i\mathbf{k}) \times \frac{1}{\varepsilon} (\nabla + i\mathbf{k}) \times \mathbf{H}_n = \frac{\omega_n^2}{c^2} \mathbf{H}_n$$

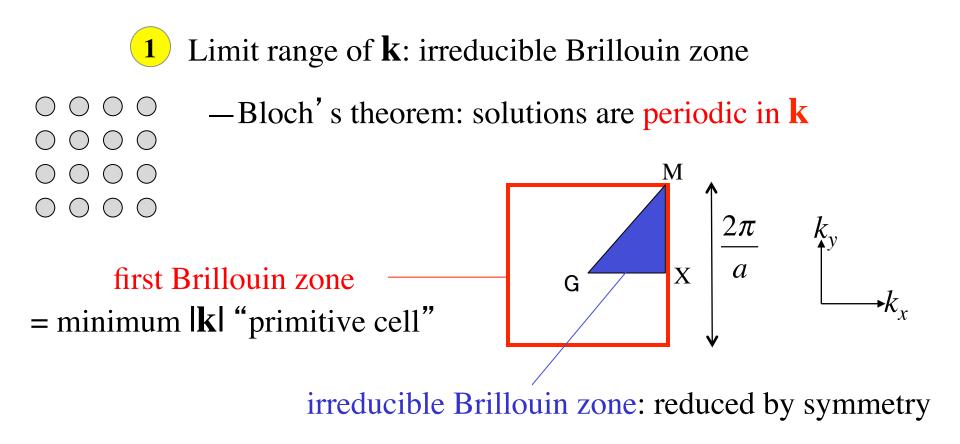
constraint: $(\nabla + i\mathbf{k}) \cdot \mathbf{H} = 0$
where magnetic field = $\mathbf{H}(\mathbf{x}) e^{i(\mathbf{k} \cdot \mathbf{x} - \omega t)}$

 $\frac{1}{2}$ Limit range of **k**: irreducible Brillouin zone

2 Limit degrees of freedom: expand **H** in finite basis

3 Efficiently solve eigenproblem: iterative methods

Solving the Maxwell Eigenproblem: 1



2 Limit degrees of freedom: expand **H** in finite basis

3) Efficiently solve eigenproblem: iterative methods

Solving the Maxwell Eigenproblem: 2a

1 Limit range of **k**: irreducible Brillouin zone
2 Limit degrees of freedom: expand **H** in finite basis (*N*)

$$|\mathbf{H}\rangle = \mathbf{H}(\mathbf{x}_t) = \sum_{m=1}^{N} h_m \mathbf{b}_m(\mathbf{x}_t)$$
 solve: $\hat{A}|\mathbf{H}\rangle = \omega^2 |\mathbf{H}\rangle$
finite matrix problem: $Ah = \omega^2 Bh$
 $\langle \mathbf{f} | \mathbf{g} \rangle = \int \mathbf{f}^* \cdot \mathbf{g}$ $A_{ml} = \langle \mathbf{b}_m | \hat{A} | \mathbf{b}_l \rangle$ $B_{ml} = \langle \mathbf{b}_m | \mathbf{b}_l \rangle$
3 Efficiently solve eigenproblem: iterative methods

Solving the Maxwell Eigenproblem: 2b

1) Limit range of \mathbf{k} : irreducible Brillouin zone

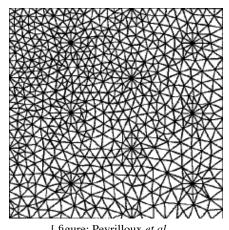
2 Limit degrees of freedom: expand **H** in finite basis — must satisfy constraint: $(\nabla + i\mathbf{k}) \cdot \mathbf{H} = 0$

Planewave (FFT) basis

$$\mathbf{H}(\mathbf{x}_t) = \sum_{\mathbf{G}} \mathbf{H}_{\mathbf{G}} e^{i\mathbf{G}\cdot\mathbf{x}_t}$$

constraint: $\mathbf{H}_{\mathbf{G}} \cdot (\mathbf{G} + \mathbf{k}) = 0$

uniform "grid," periodic boundaries, simple code, O(N log N)



[figure: Peyrilloux *et al.*, *J. Lightwave Tech.* **21**, 536 (2003)]

Finite-element basis

constraint, boundary conditions:

Nédélec elements

[Nédélec, *Numerische Math*. **35**, 315 (1980)]

nonuniform mesh, more arbitrary boundaries, complex code & mesh, O(*N*)

3 Efficiently solve eigenproblem: iterative methods

Solving the Maxwell Eigenproblem: 3a

1 Limit range of \mathbf{k} : irreducible Brillouin zone

2 Limit degrees of freedom: expand **H** in finite basis

Efficiently solve eigenproblem: iterative methods

$$Ah = \omega^2 Bh$$

Slow way: compute A & B, ask LAPACK for eigenvalues — requires $O(N^2)$ storage, $O(N^3)$ time

Faster way:

- start with *initial guess* eigenvector h_0
- *iteratively* improve

- O(Np) storage, ~ $O(Np^2)$ time for p eigenvectors

(p smallest eigenvalues)

Solving the Maxwell Eigenproblem: 3b

1 Limit range of \mathbf{k} : irreducible Brillouin zone

2 Limit degrees of freedom: expand **H** in finite basis

Efficiently solve eigenproblem: iterative methods

$$Ah = \omega^2 Bh$$

Many iterative methods:

 Arnoldi, Lanczos, Davidson, Jacobi-Davidson, ..., Rayleigh-quotient minimization

Solving the Maxwell Eigenproblem: 3c

Limit range of **k**: irreducible Brillouin zone

Efficiently solve eigenproblem: iterative methods

$$Ah = \omega^2 Bh$$

Many iterative methods:

- Arnoldi, Lanczos, Davidson, Jacobi-Davidson, ..., **Rayleigh-quotient minimization**

for Hermitian matrices, smallest eigenvalue ω_0 minimizes:

"variational theorem"

$$\omega_0^2 = \min_h \frac{h' Ah}{h' Bh}$$

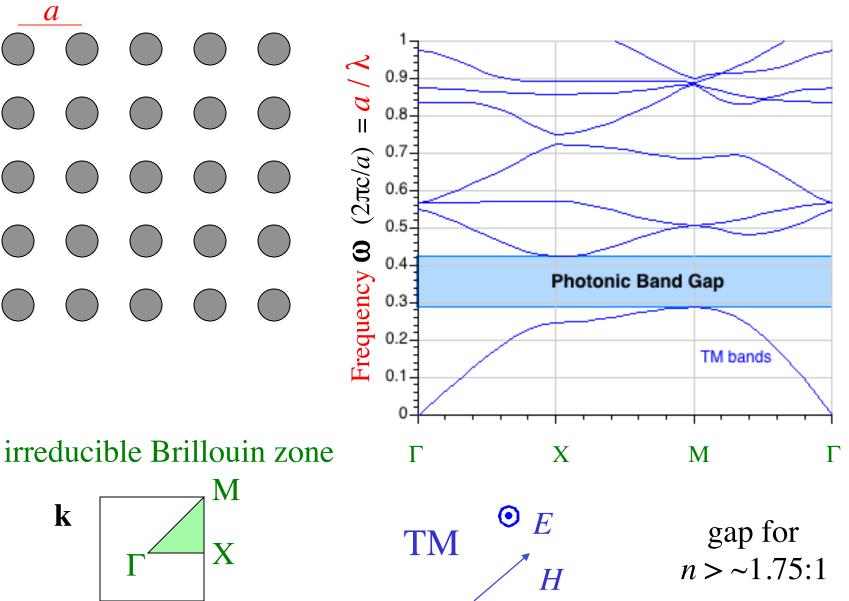
71

minimize by preconditioned conjugate-gradient (or...)

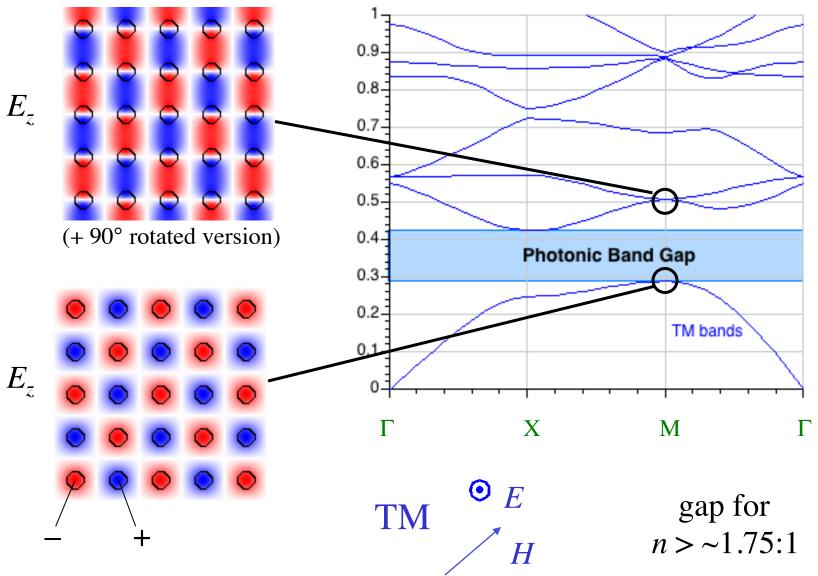
Outline

- Preliminaries: waves in periodic media
- Photonic crystals in theory and practice
- Bulk crystal properties
- Intentional defects and devices
- Index-guiding and incomplete gaps
- Photonic-crystal fibers
- Perturbations, tuning, and disorder

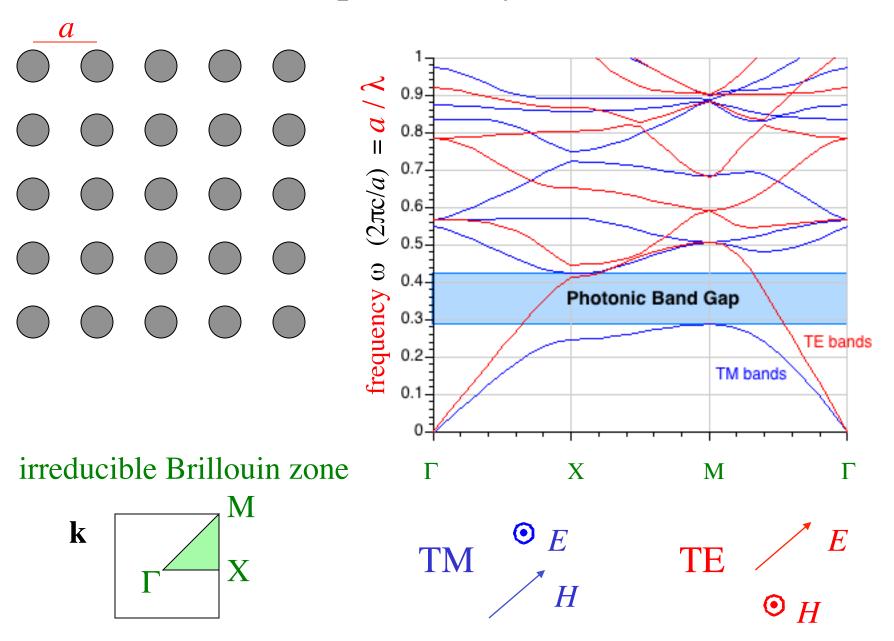
2d periodicity, $\mathcal{E}=12:1$



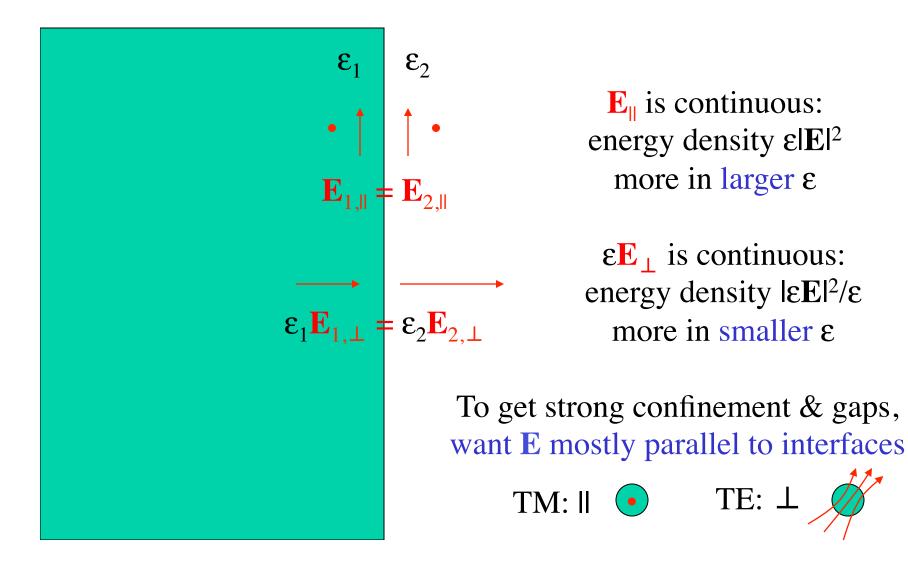
2d periodicity, $\mathcal{E}=12:1$



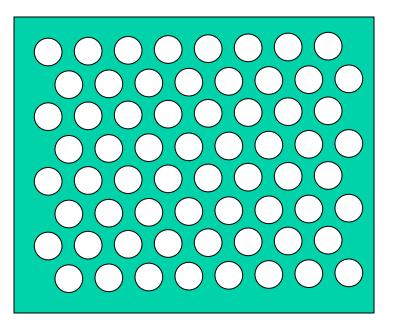
2d periodicity, $\mathcal{E}=12:1$

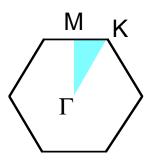


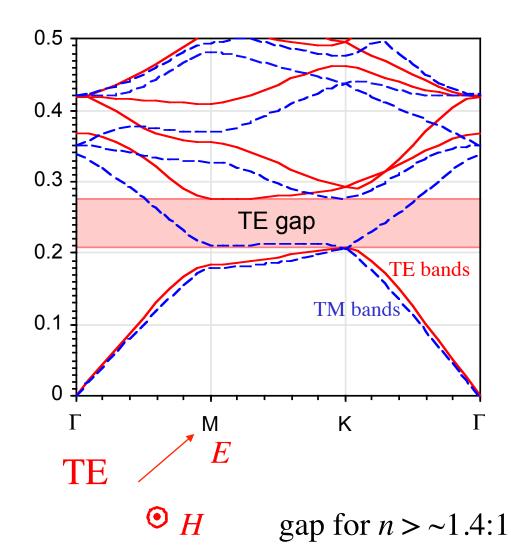
What a difference a boundary condition makes...

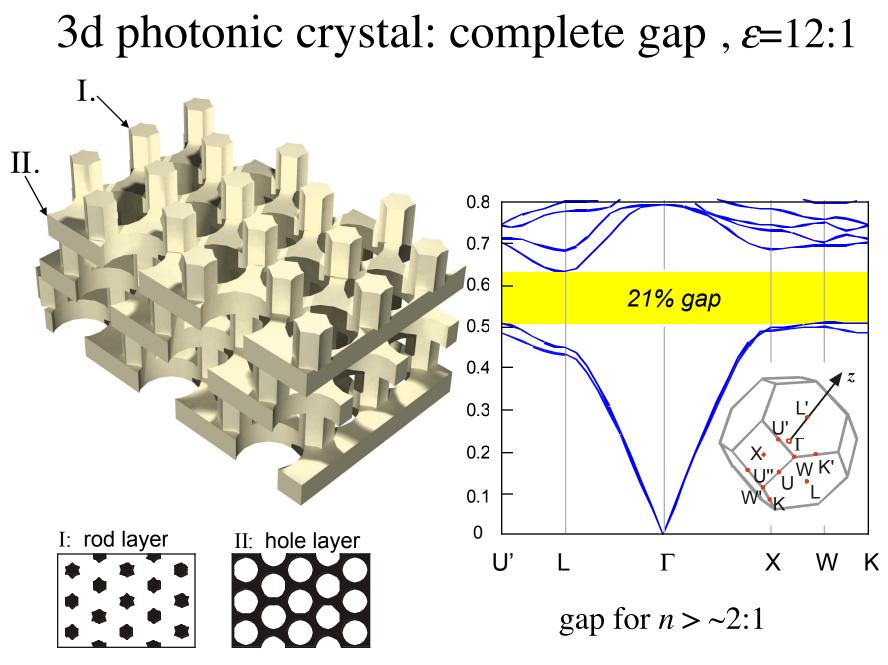


2d photonic crystal: TE gap, $\mathcal{E}=12:1$









[S.G. Johnson et al., Appl. Phys. Lett. 77, 3490 (2000)]

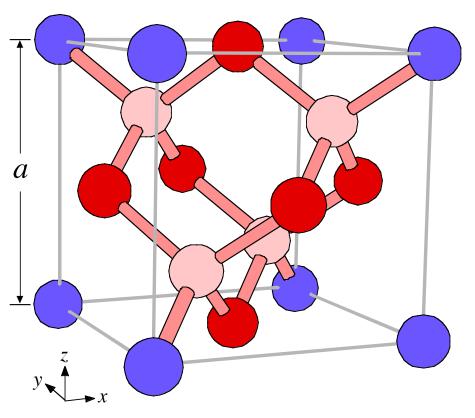
You, too, can compute photonic eigenmodes!

MIT Photonic-Bands (MPB) package: http://ab-initio.mit.edu/mpb

The Mother of (almost) All Bandgaps

The diamond lattice:

fcc (face-centered-cubic) with two "atoms" per unit cell / (primitive)



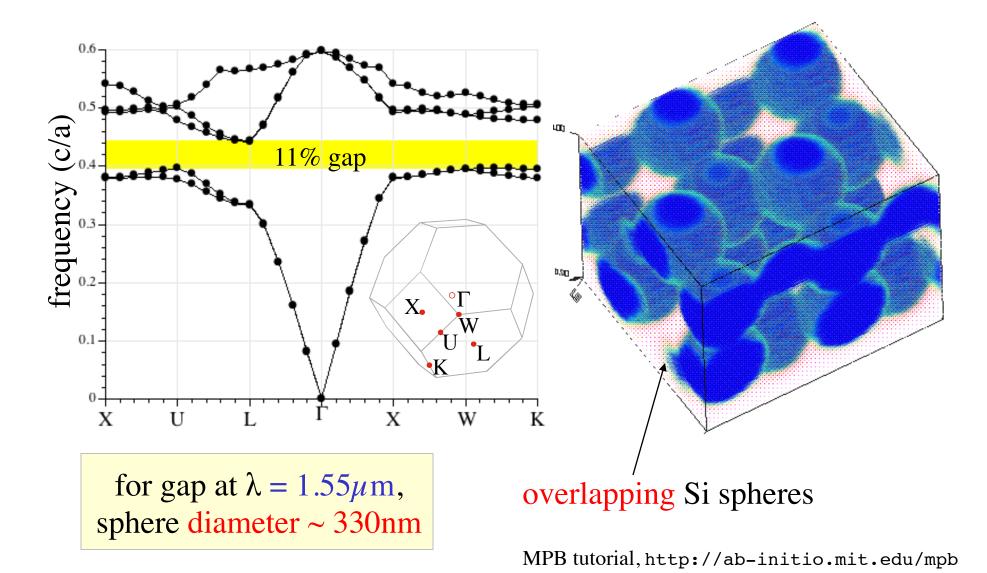
Recipe for a complete gap:

fcc = most-spherical Brillouin zone

+ diamond "bonds" = lowest (two) bands can concentrate in lines

The First 3d Bandgap Structure

K. M. Ho, C. T. Chan, and C. M. Soukoulis, *Phys. Rev. Lett.* 65, 3152 (1990).



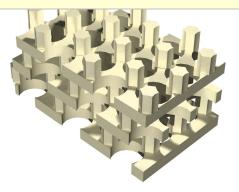
Layer-by-Layer Lithography

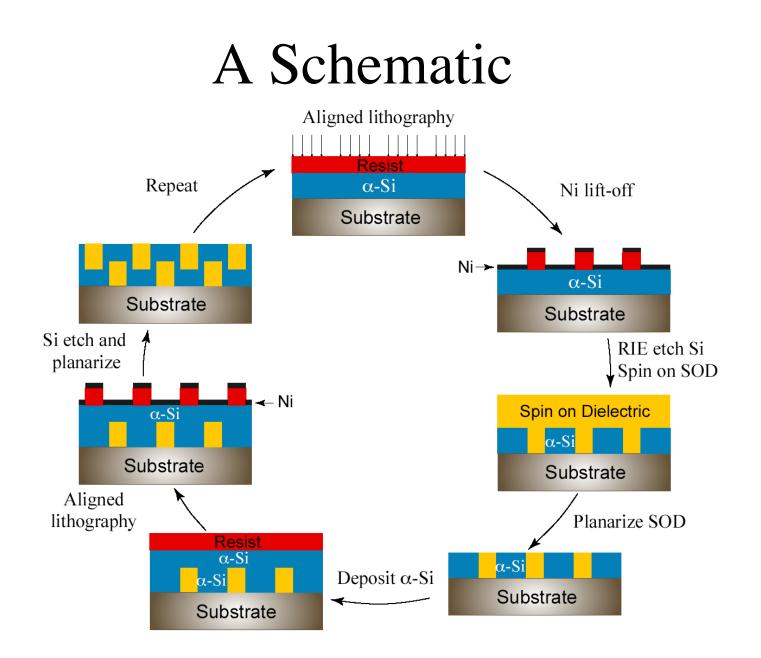
• Fabrication of 2d patterns in Si or GaAs is very advanced (think: Pentium IV, 50 million transistors)

...inter-layer alignment techniques are only slightly more exotic

So, make 3d structure one layer at a time

Need a 3d crystal with constant cross-section layers



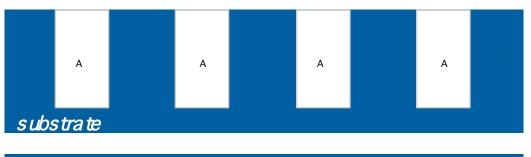


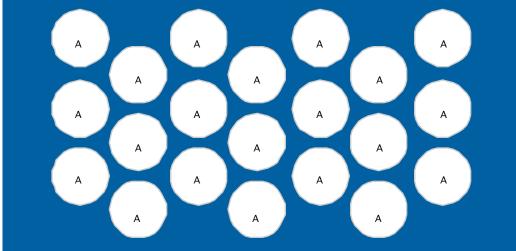
[M.Qi, H.Smith, MIT]

side view

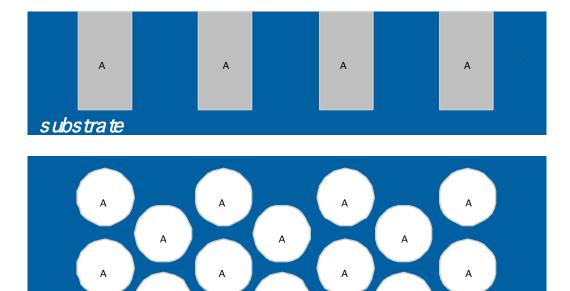
top view

expose/etch holes





backfill with silica (SiO₂) & polish



А

Α

А

А

А

А

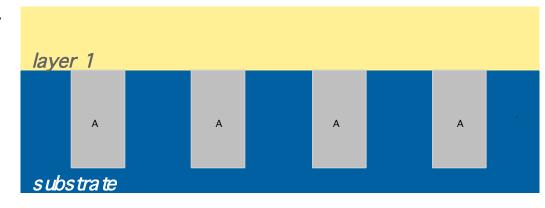
А

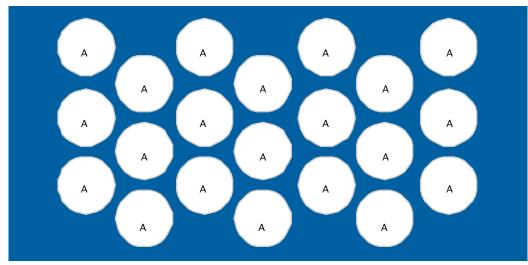
А

А

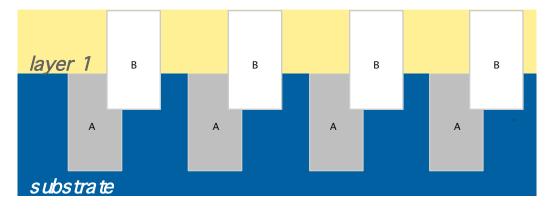
А

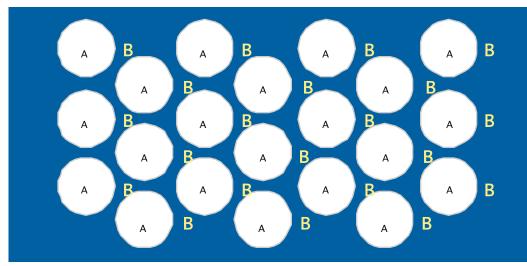
deposit another Si layer



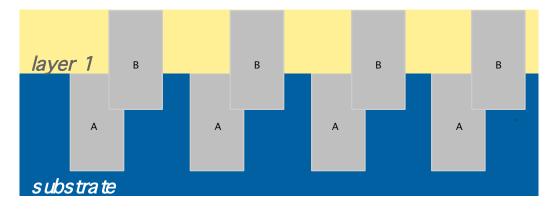


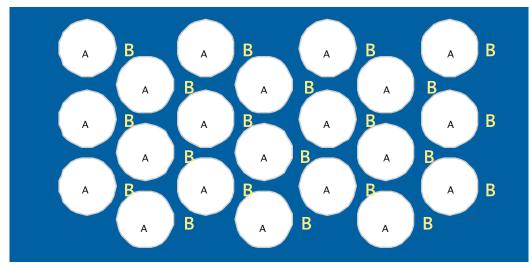
dig more holes offset & overlapping





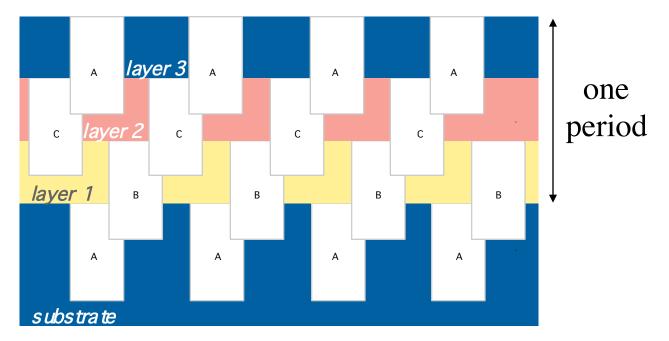
backfill

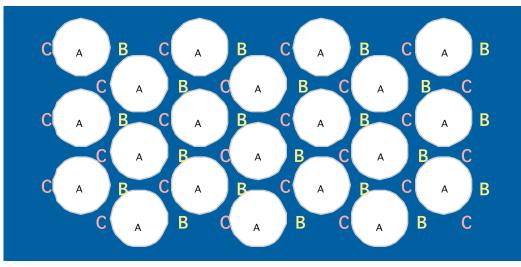


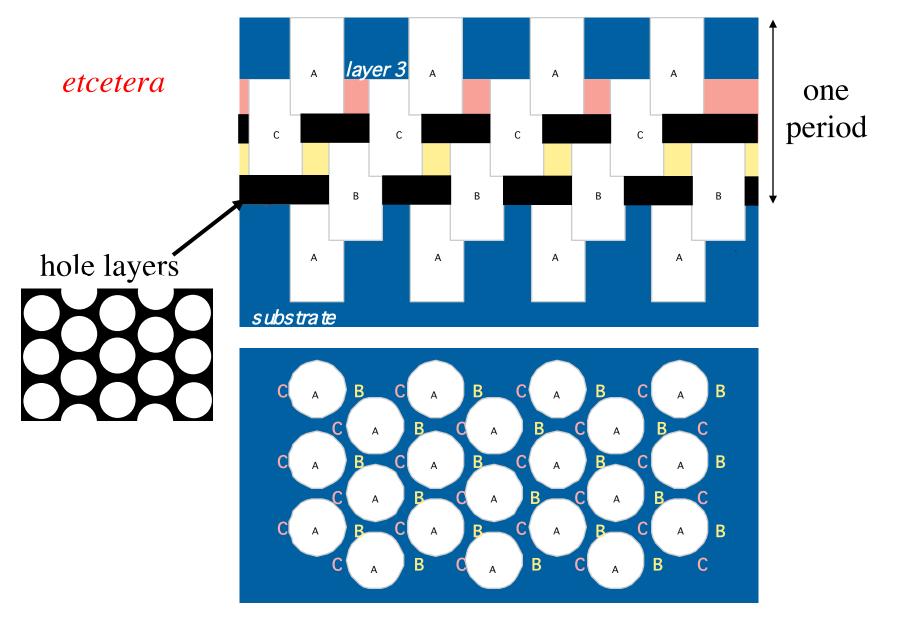


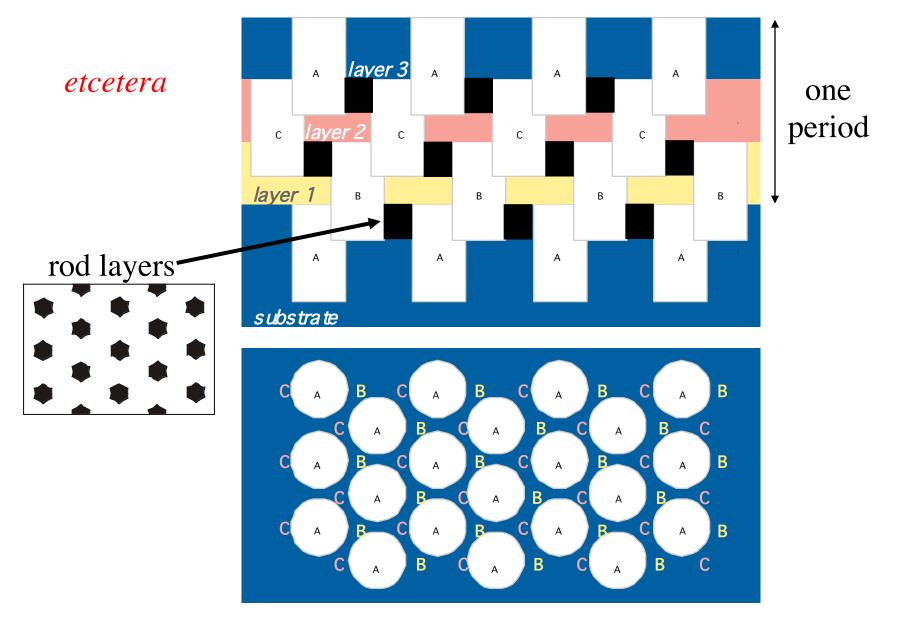
(dissolve silica when done)

etcetera

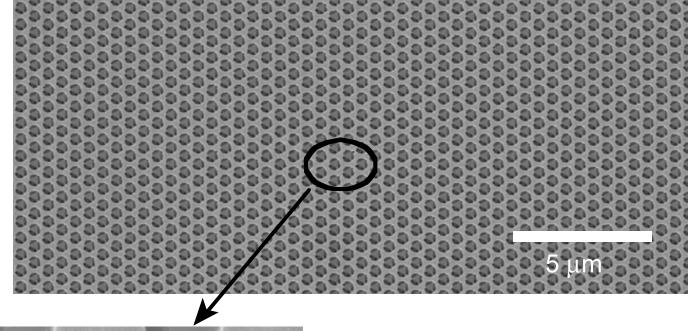


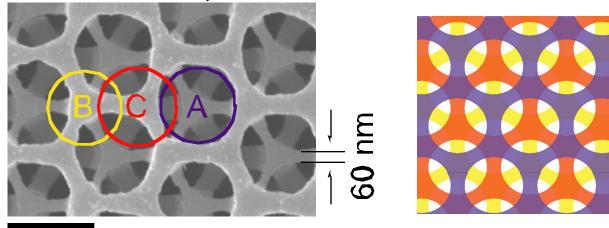


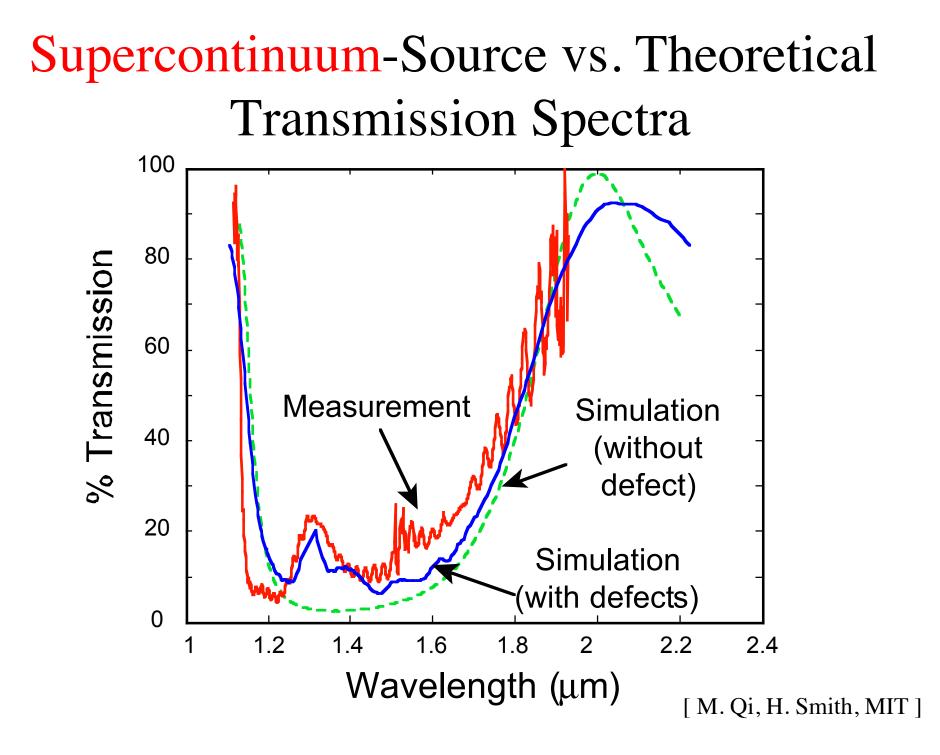




7-layer E-Beam Fabrication





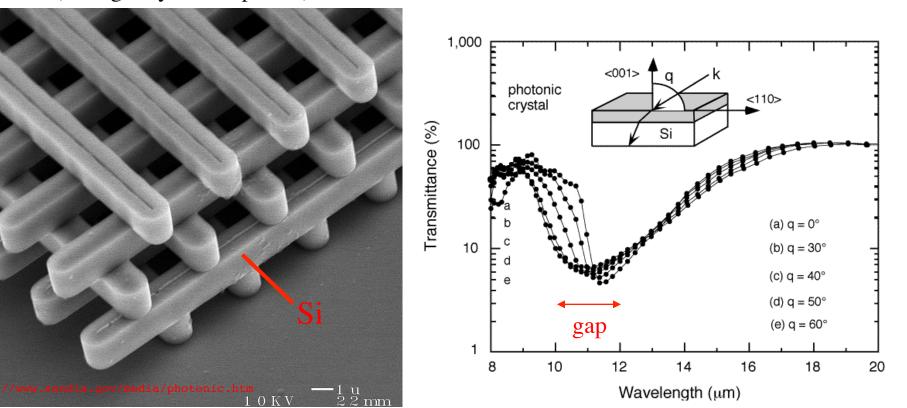


an earlier design: (& currently more popular) The Woodpile Crystal

[K. Ho et al., Solid State Comm. 89, 413 (1994)] [H. S. Sözüer et al., J. Mod. Opt. 41, 231 (1994)]

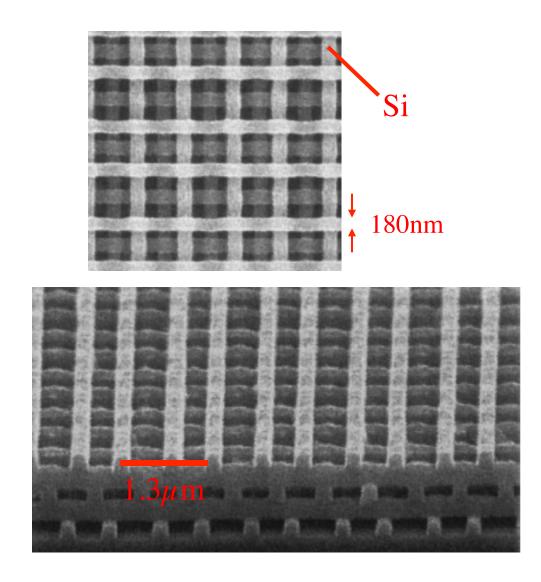
(4 "log" layers = 1 period)

[S. Y. Lin et al., Nature **394**, 251 (1998)]

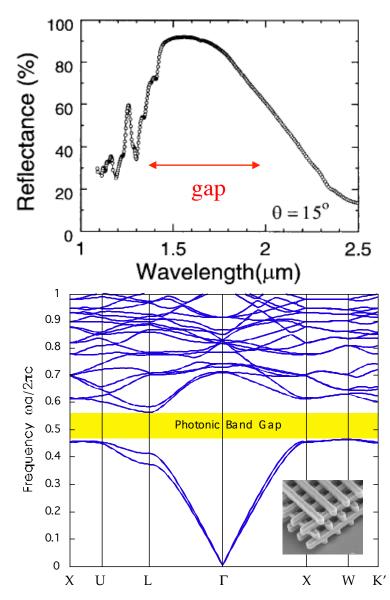


1.25 Periods of Woodpile @ 1.55µm

(4 "log" layers = 1 period)

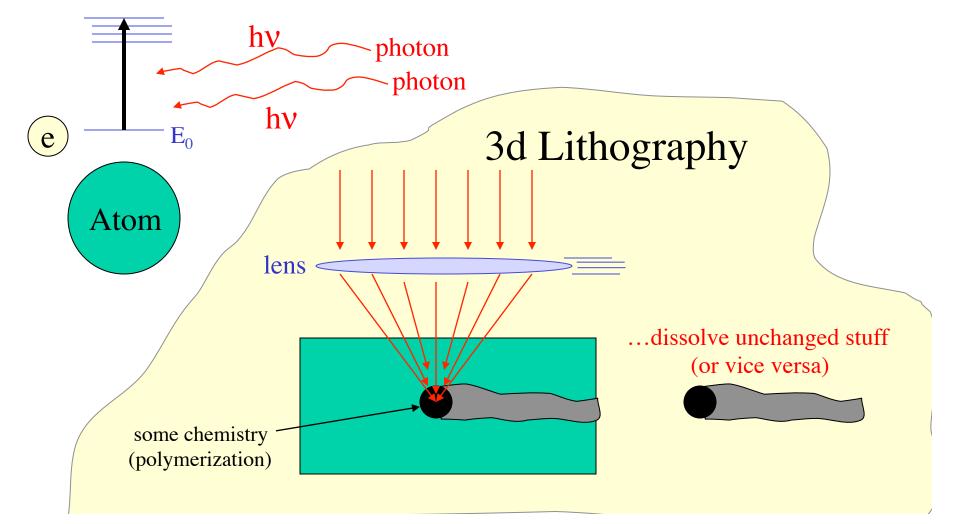


[Lin & Fleming, JLT 17, 1944 (1999)]



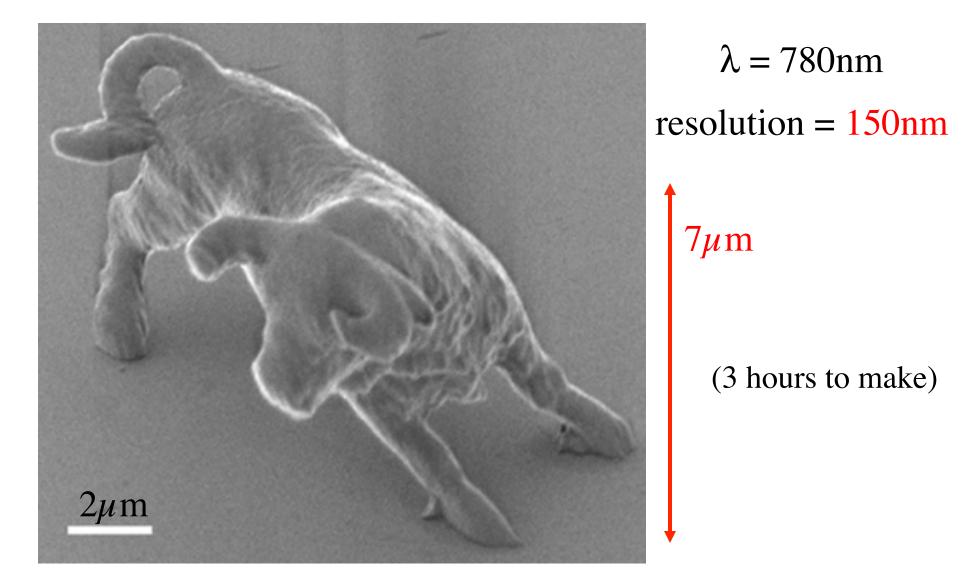
Two-Photon Lithography

 $2 hv = \Delta E$ 2-photon probability ~ (light intensity)²



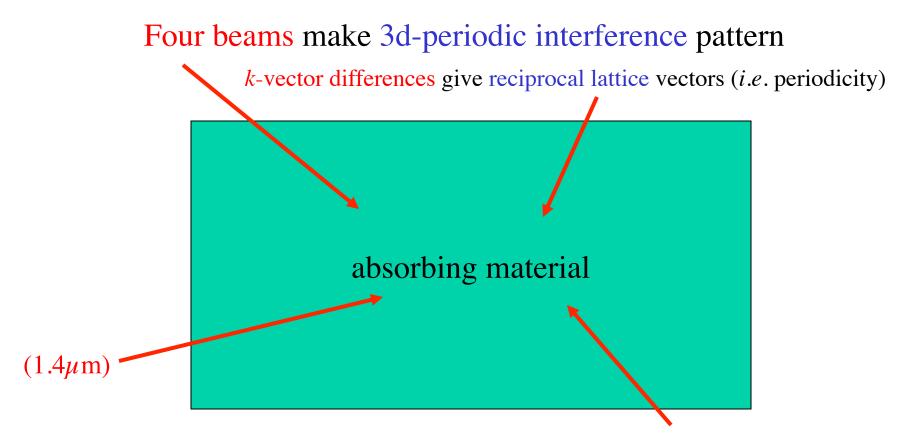
Lithography is a Beast

[S. Kawata et al., Nature 412, 697 (2001)]



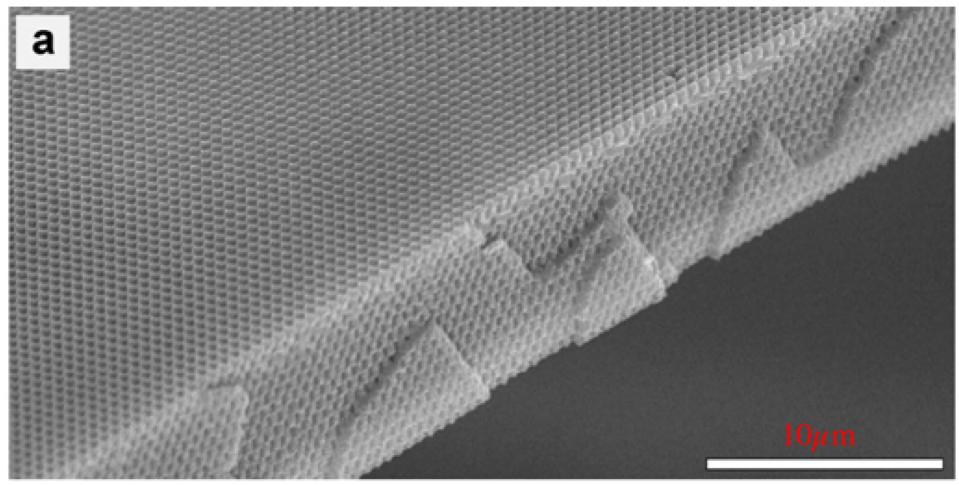
Holographic Lithography

[D. N. Sharp et al., Opt. Quant. Elec. 34, 3 (2002)]



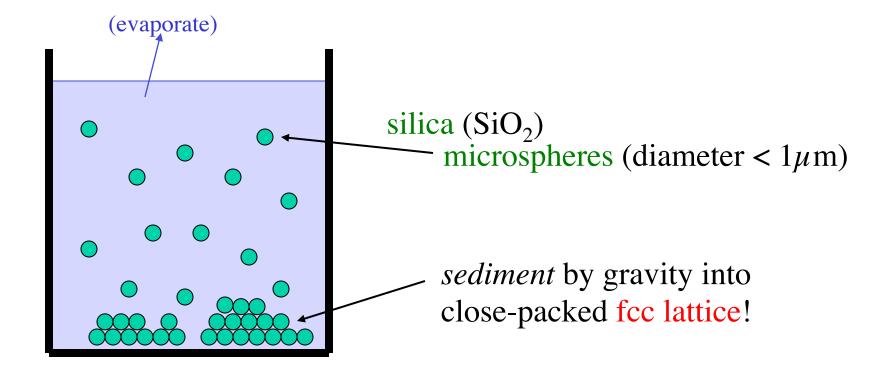
beam polarizations + amplitudes (8 parameters) give unit cell

One-Photon Holographic Lithography [D. N. Sharp et al., Opt. Quant. Elec. 34, 3 (2002)]

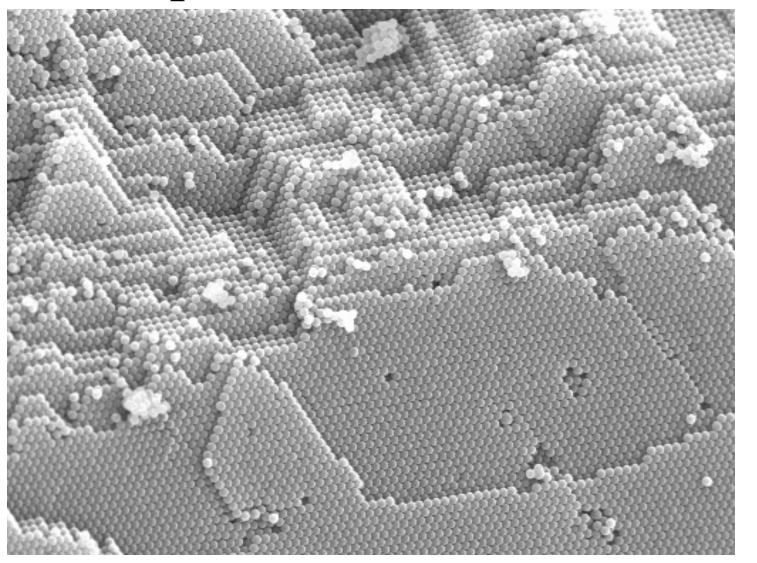


huge volumes, long-range periodic, fcc lattice...backfill for high contrast

Mass-production II: Colloids



Mass-production II: Colloids



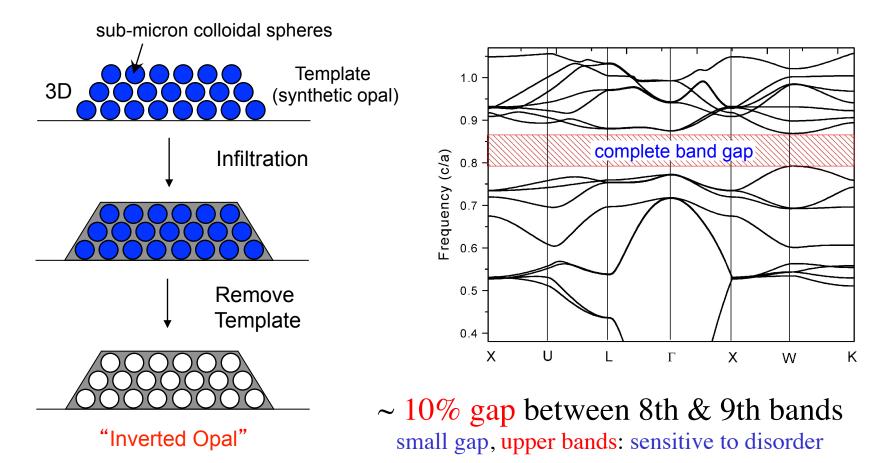
http://www.icmm.csic.es/cefe/

Inverse Opals

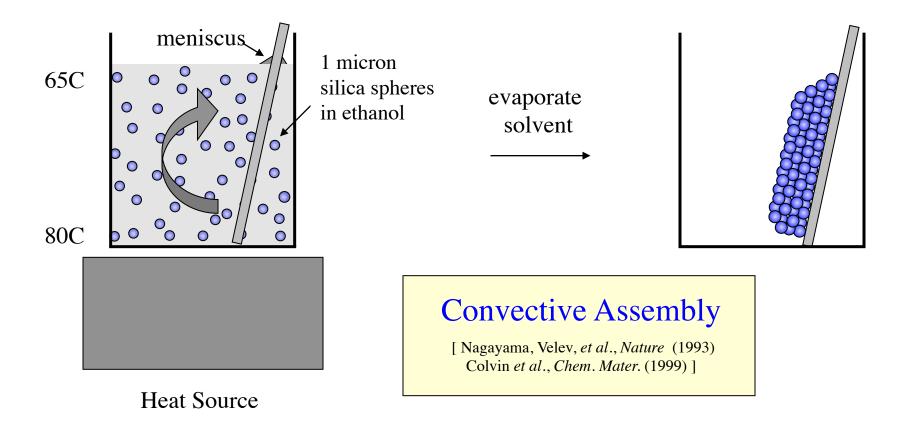
[figs courtesy D. Norris, UMN]

[H.S.Sözüer, PRB 45, 13962 (1992)]

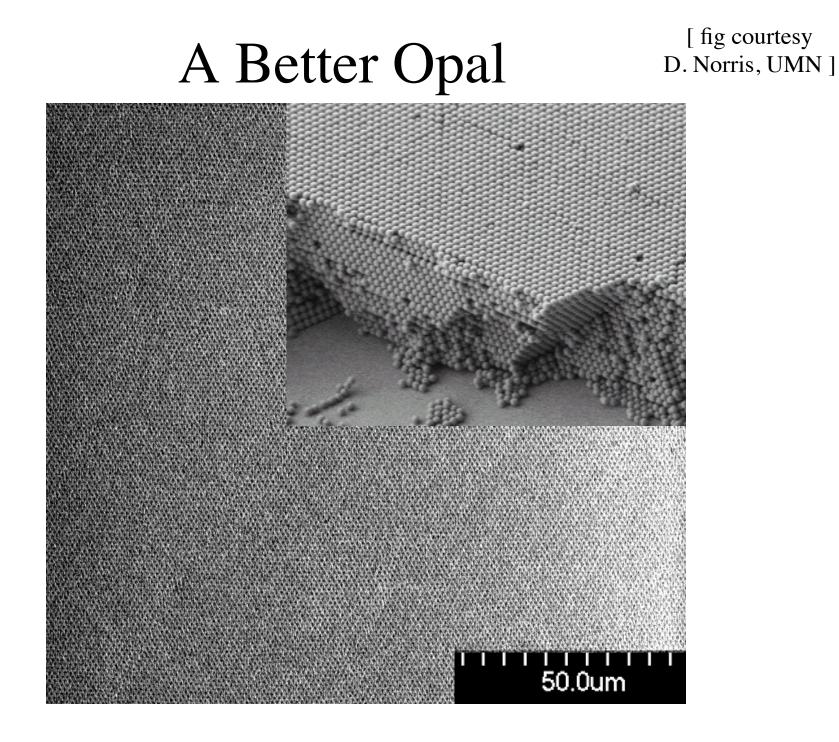
fcc solid spheres do not have a gap... ...but fcc spherical holes in Si *do* have a gap



In Order To Form [figs courtesy D. Norris, UMN] a More Perfect Crystal...

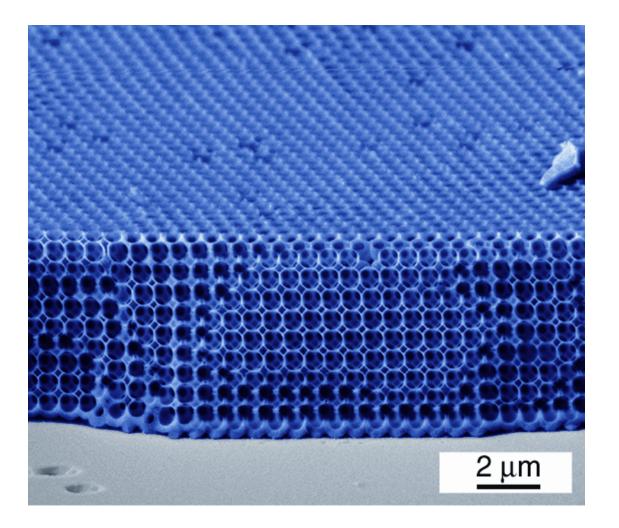


- Capillary forces during drying cause assembly in the meniscus
- Extremely flat, large-area opals of controllable thickness



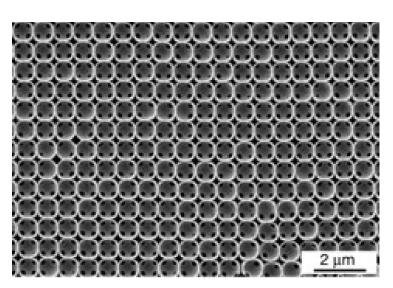
Inverse-Opal Photonic Crystal

[fig courtesy D. Norris, UMN]

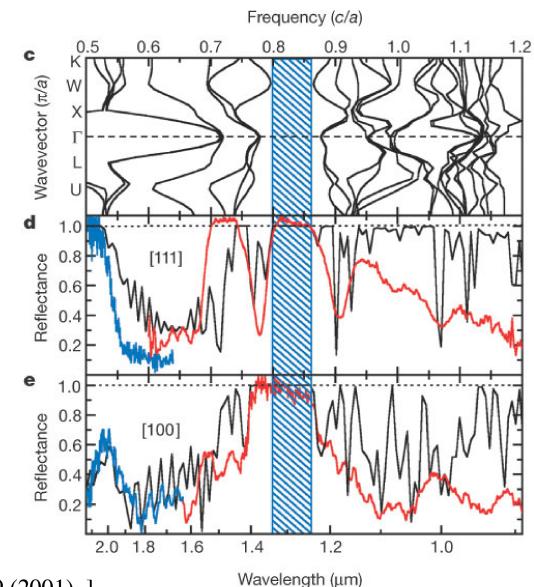


[Y.A. Vlasov et al., Nature 414, 289 (2001).]

Inverse-Opal Band Gap

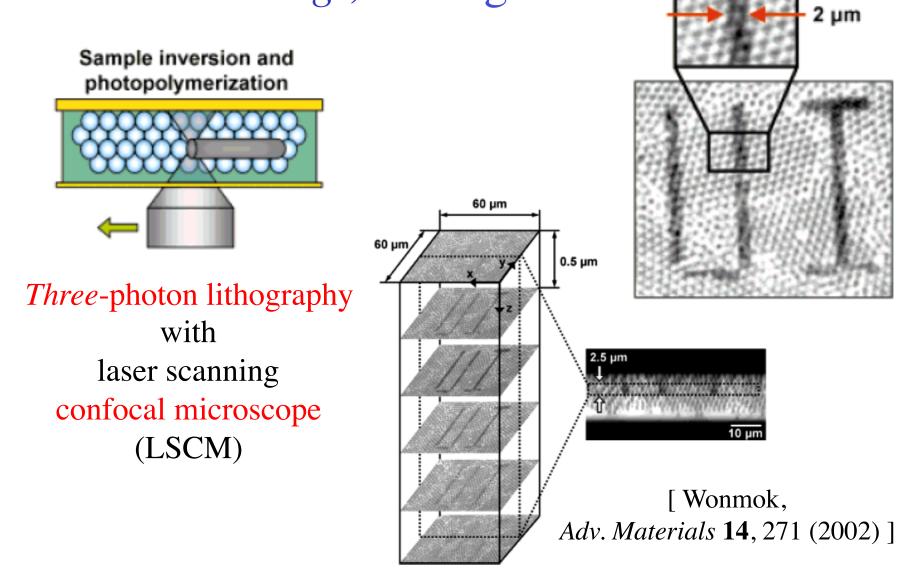


good agreement between **theory** (black) & experiment (red/blue)

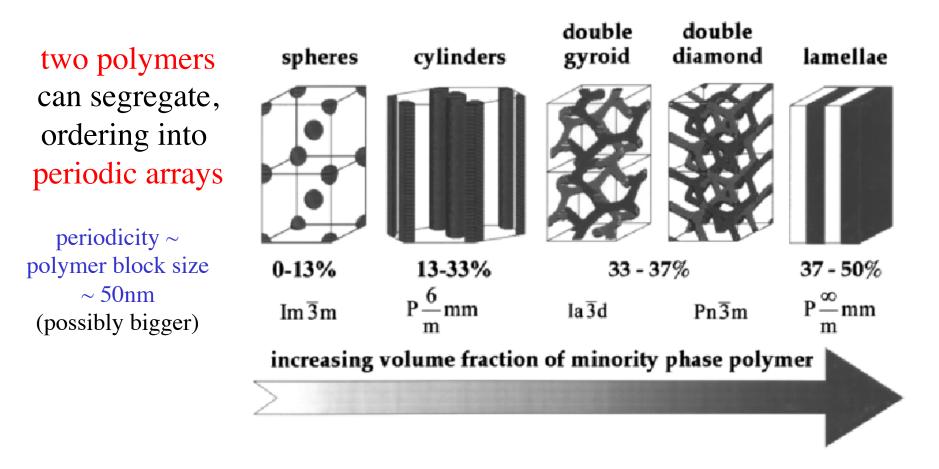


[Y.A. Vlasov et al., Nature 414, 289 (2001).]

Inserting Defects in Inverse Opals *e.g.*, Waveguides

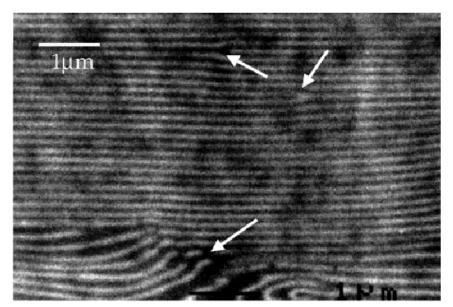


Mass-Production III: Block (not Bloch) Copolymers



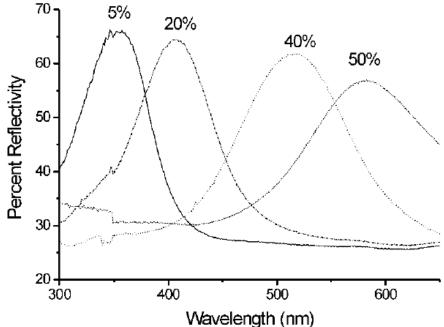
[Y. Fink, A. M. Urbas, M. G. Bawendi, J. D. Joannopoulos, E. L. Thomas, J. Lightwave Tech. 17, 1963 (1999)]

Block-Copolymer 1d Visible Bandgap



Flexible material: bandgap can be shifted by stretching it!

reflection for differing homopolymer %

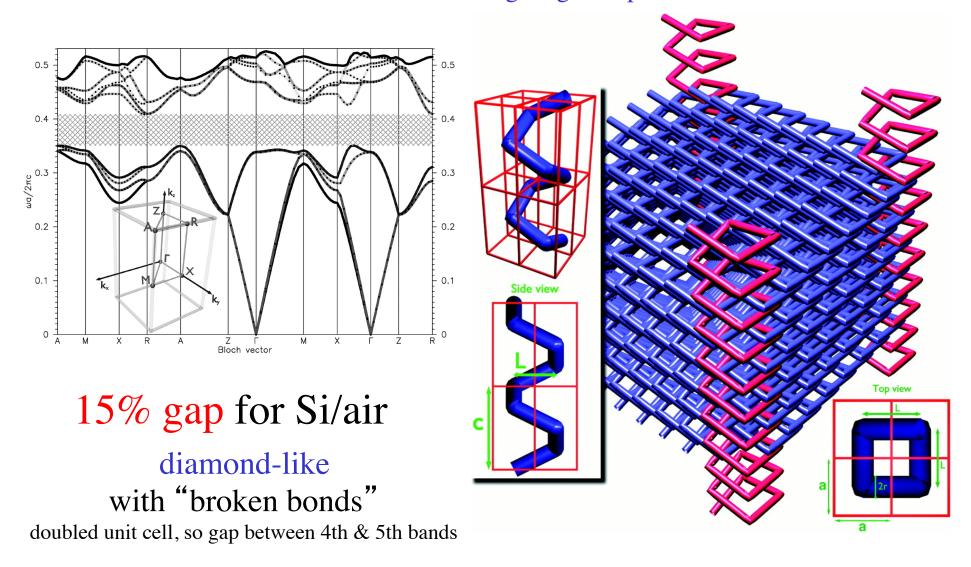


dark/light: polystyrene/polyisoprene

n = 1.59/1.51

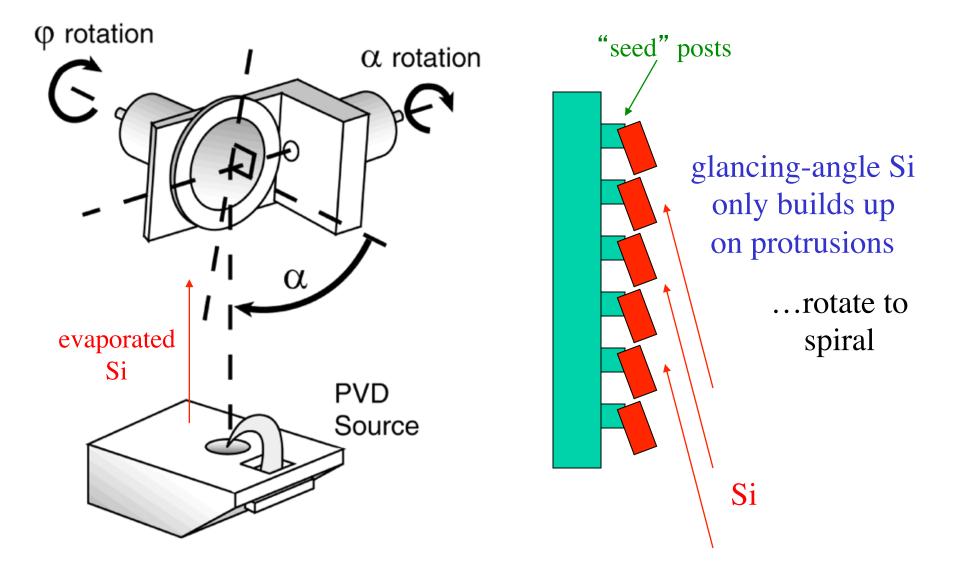
[A. Urbas et al., Advanced Materials 12, 812 (2000)]

Be GLAD: Even more crystals! "GLAD" = "GLancing Angle Deposition"



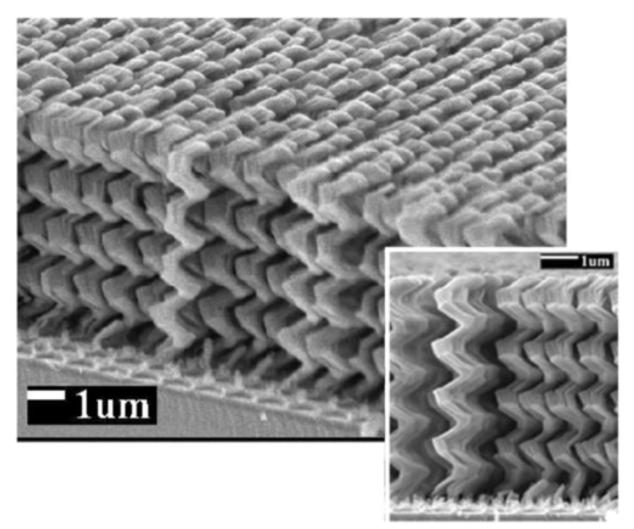
[O. Toader and S. John, *Science* **292**, 1133 (2001)]

Glancing Angle Deposition



[S. R. Kennedy et al., Nano Letters 2, 59 (2002)]

An Early GLAD Crystal



[S.R. Kennedy et al., Nano Letters 2, 59 (2002)]

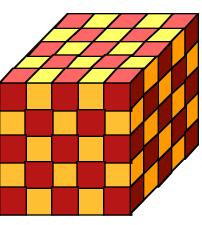
Outline

- Preliminaries: waves in periodic media
- Photonic crystals in theory and practice
- Bulk crystal properties
- Intentional defects and devices
- Index-guiding and incomplete gaps
- Photonic-crystal fibers
- Perturbations, tuning, and disorder

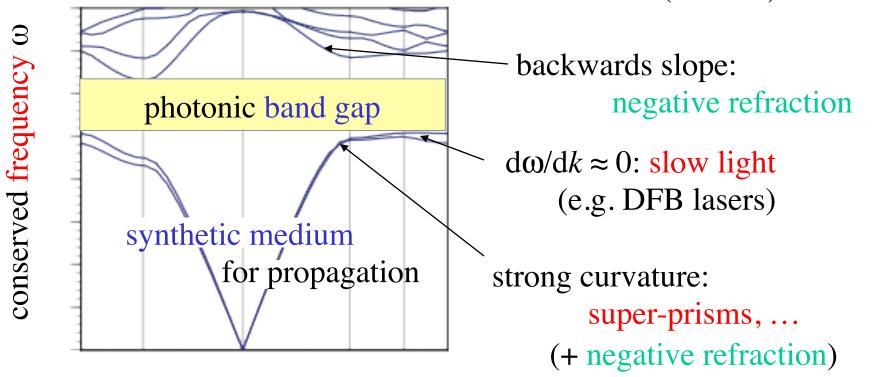
Properties of Bulk Crystals

by Bloch's theorem

band diagram (dispersion relation)



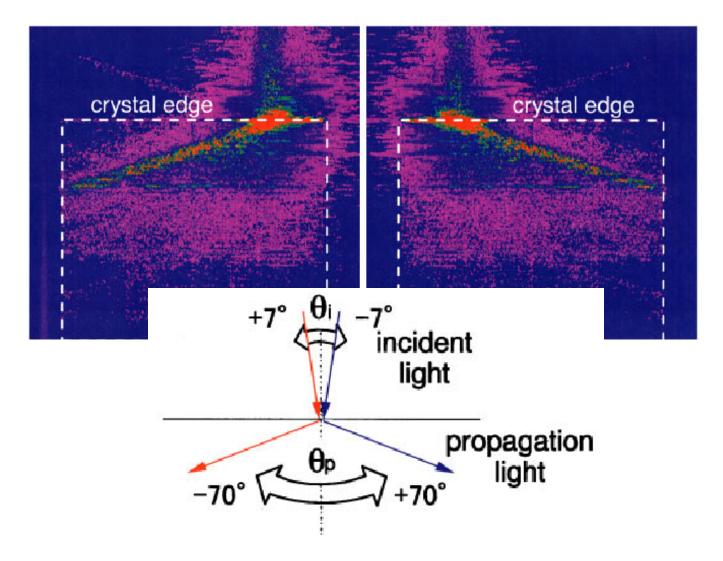
(cartoon)



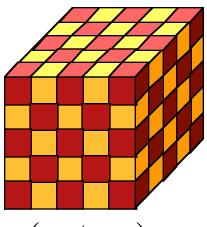
conserved wavevector k

Superprisms from divergent dispersion (band curvature)

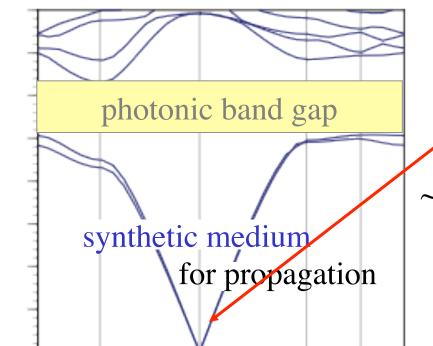
[Kosaka, PRB 58, R10096 (1998).]



Photonic Crystals & Metamaterials



(cartoon)



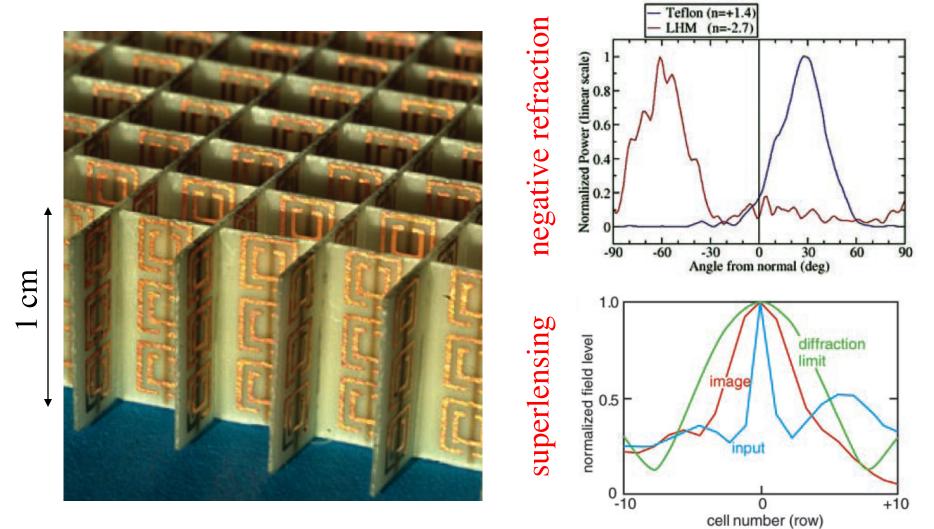
band diagram (dispersion relation)

at small ω (long wavelengths $\lambda >> a$) $\omega(k) \sim$ straight line \sim effectively homogeneous material = metamaterials

conserved wavevector k

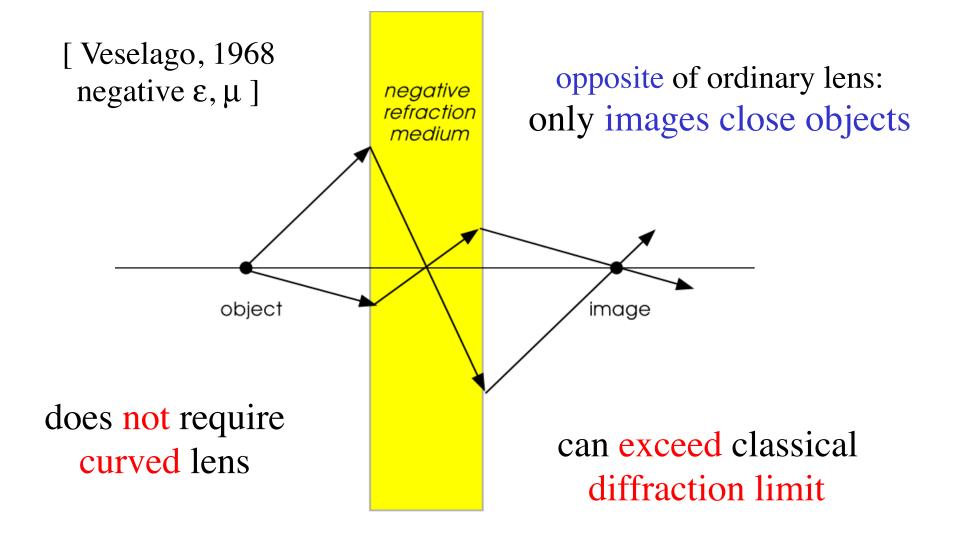
conserved frequency w

Microwave negative refraction [D. R. Smith, J. B. Pendry, M. C. K. Wiltshire, *Science* **305**, 788 (2004)]

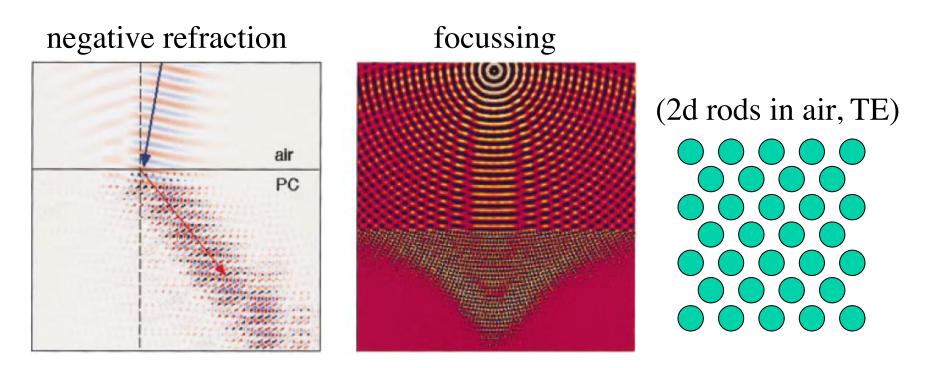


Magnetic (ring) + Electric (strip) resonances

Negative Indices & Refraction



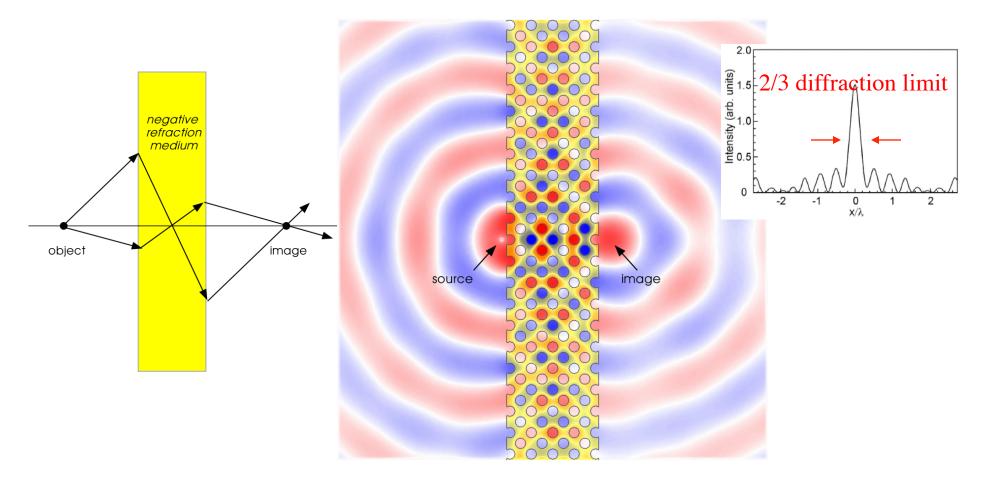
Negative-refractive all-dielectric photonic crystals



[M. Notomi, *PRB* 62, 10696 (2000).] **not metamaterials:** wavelength ~ *a*, no homogeneous material can reproduce *all* behaviors

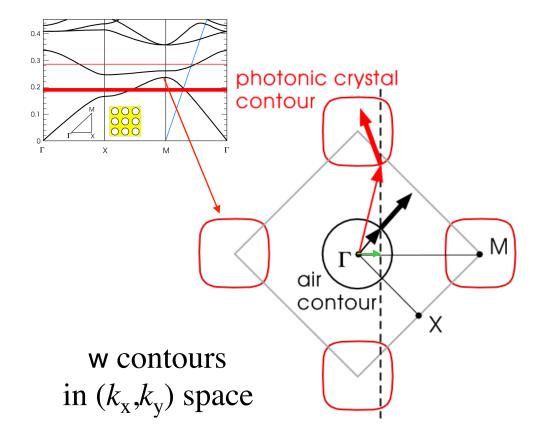
Superlensing with Photonic Crystals

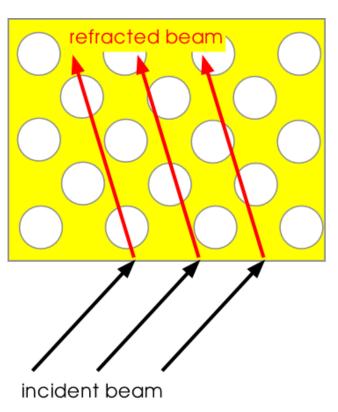
[Luo *et al*, *PRB* **68**, 045115 (2003).]



Negative Refraction and wavevector diagrams

[Luo et al, PRB 65, 2001104 (2002).]





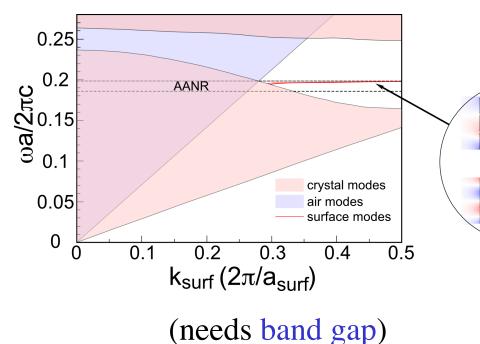
 $\rightarrow k_{\parallel}$ is conserved

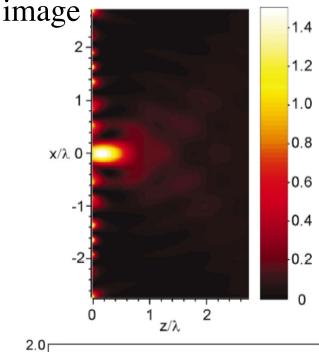
Super-lensing

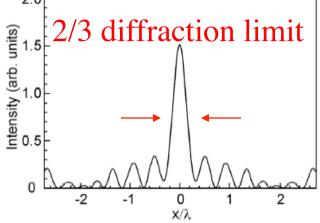
[Luo, PRB 68, 045115 (2003).]

Classical diffraction limit comes from loss of evanescent waves

... can be recovered by resonant coupling to surface states





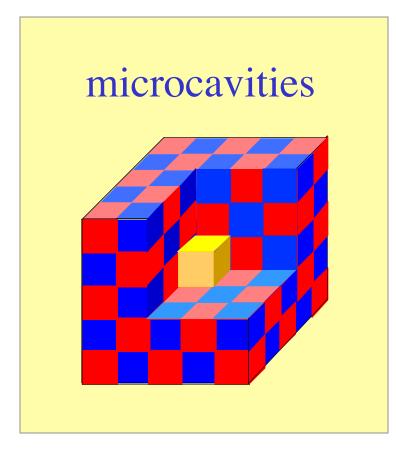


the magic of periodicity: unusual dispersion without scattering

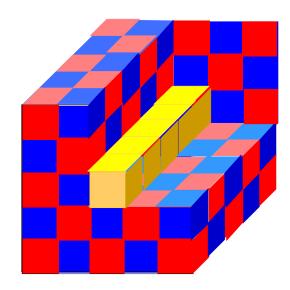
Outline

- Preliminaries: waves in periodic media
- Photonic crystals in theory and practice
- Bulk crystal properties
- Intentional defects and devices
- Index-guiding and incomplete gaps
- Photonic-crystal fibers
- Perturbations, tuning, and disorder

Intentional "defects" are good

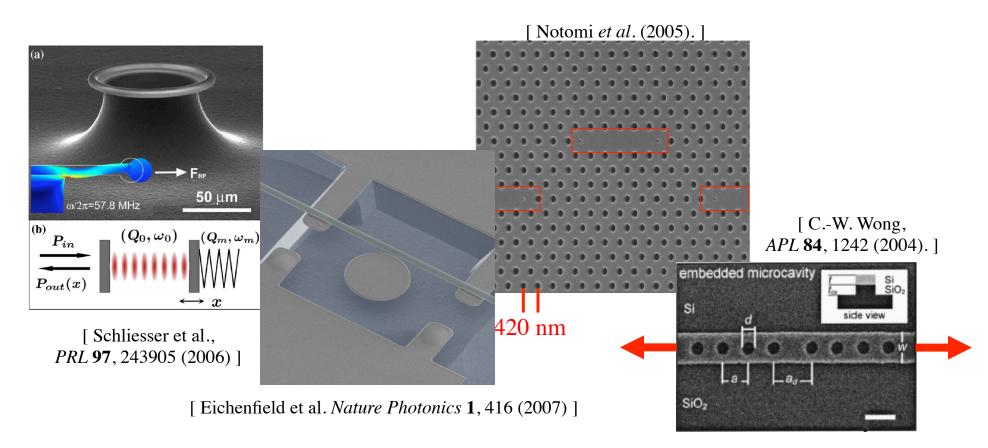


waveguides ("wires")



Resonance

an oscillating mode trapped for a long time in some volume (of light, sound, ...) lifetime $\tau >> 2\pi/\omega_0$ frequency w_0 quality factor $Q = \omega_0 \tau/2$ modal energy ~ $e^{-\omega_0 \tau/Q}$ volume V



Why Resonance?

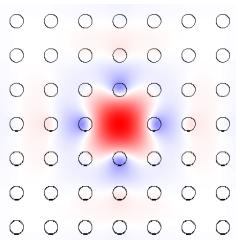
an oscillating mode trapped for a long time in some volume

- long time = narrow bandwidth ... filters (WDM, etc.) - 1/Q = fractional bandwidth
- resonant processes allow one to "impedance match" hard-to-couple inputs/outputs
- long time, small V ... enhanced wave/matter interaction

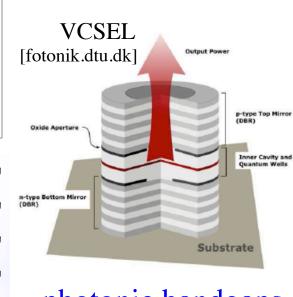
 lasers, nonlinear optics, opto-mechanical coupling, sensors, LEDs, thermal sources, ...

How Resonance? need mechanism to trap light for long time

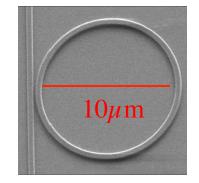
[llnl.gov]



metallic cavities: good for microwave, dissipative for infrared



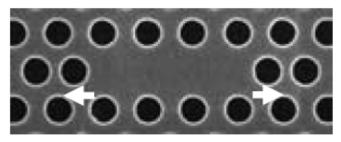
photonic bandgaps (complete or partial + index-guiding)



[Xu & Lipson (2005)]

ring/disc/sphere resonators:
a waveguide bent in circle,
bending loss ~ exp(-radius)

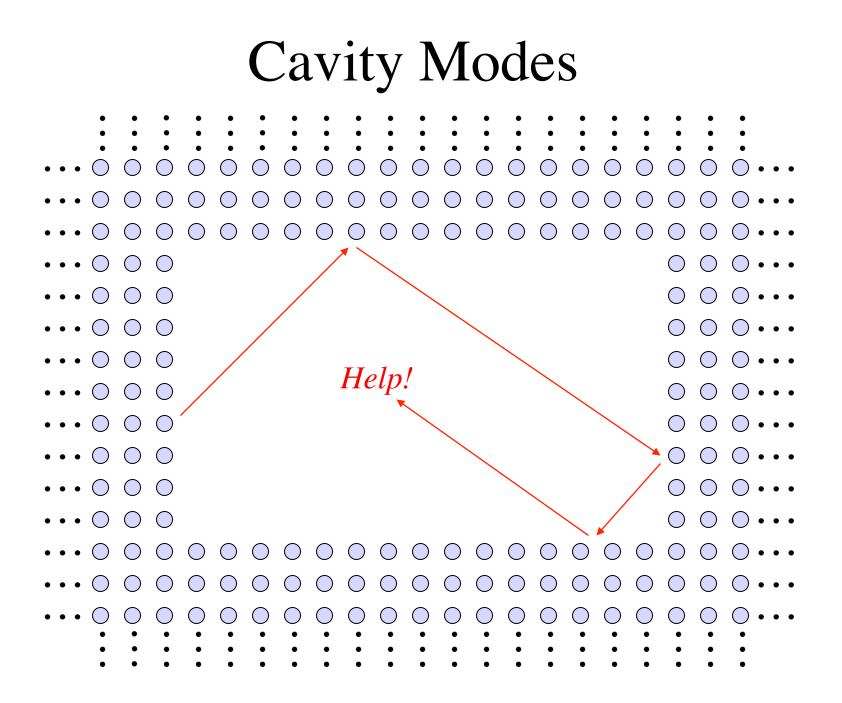
[Akahane, Nature 425, 944 (2003)]



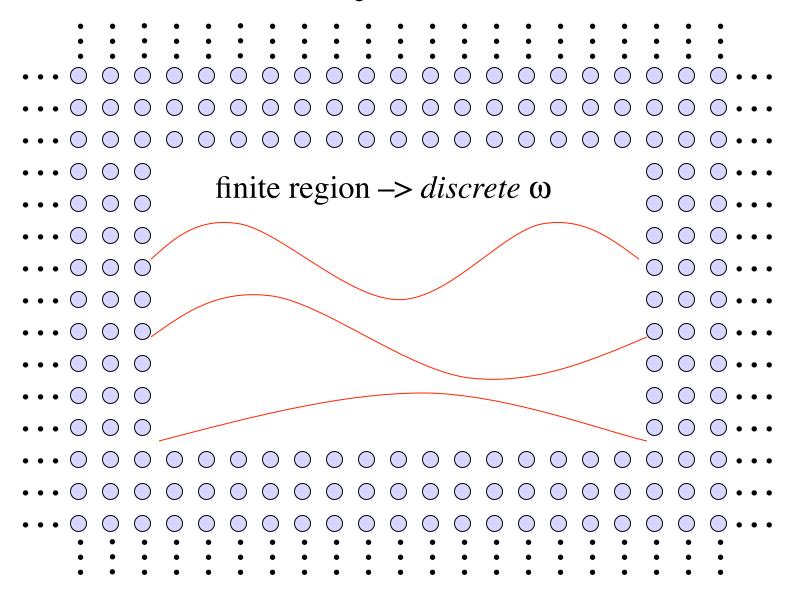
(planar Si slab)

Why do defects in crystals trap resonant modes?

What do the modes look like?



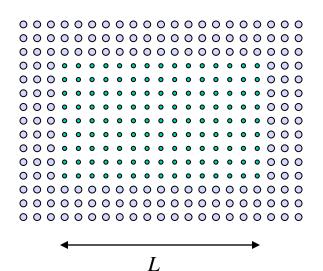
Cavity Modes



Cavity Modes: Smaller Change

 \bullet \bullet \bullet \bigcirc \bigcirc \bigcirc \bullet \bullet \circ \circ \circ \bigcirc • • • • $\bullet \bullet \bullet \bullet \bigcirc \bigcirc \bigcirc \bullet \bullet \bullet$ $\bullet \quad \bullet \quad \bullet \quad \bigcirc \quad \bigcirc \quad \bigcirc \quad \bullet \quad \bullet \quad \bullet$ $\bullet \bullet \bullet \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ • • • • • • • • $\bullet \quad \bullet \quad \bullet \quad \bigcirc \quad \bigcirc \quad \bigcirc \quad \bullet \quad \bullet \quad \bullet$ \bigcirc \bigcirc \bigcirc • • • • ••• • • • \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc ••• \bigcirc \bigcirc \bigcirc \bigcirc

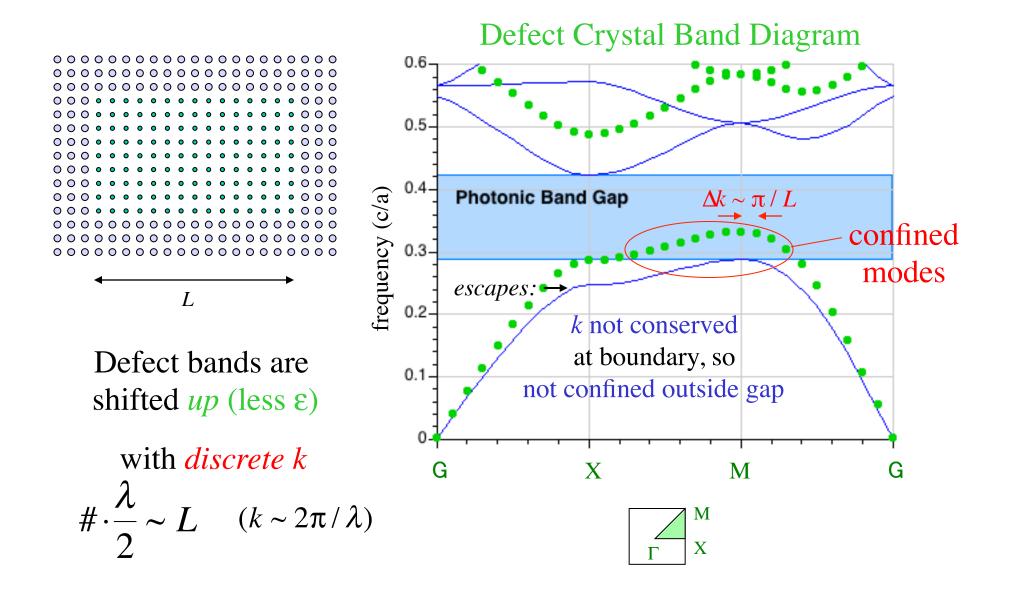
Cavity Modes: Smaller Change



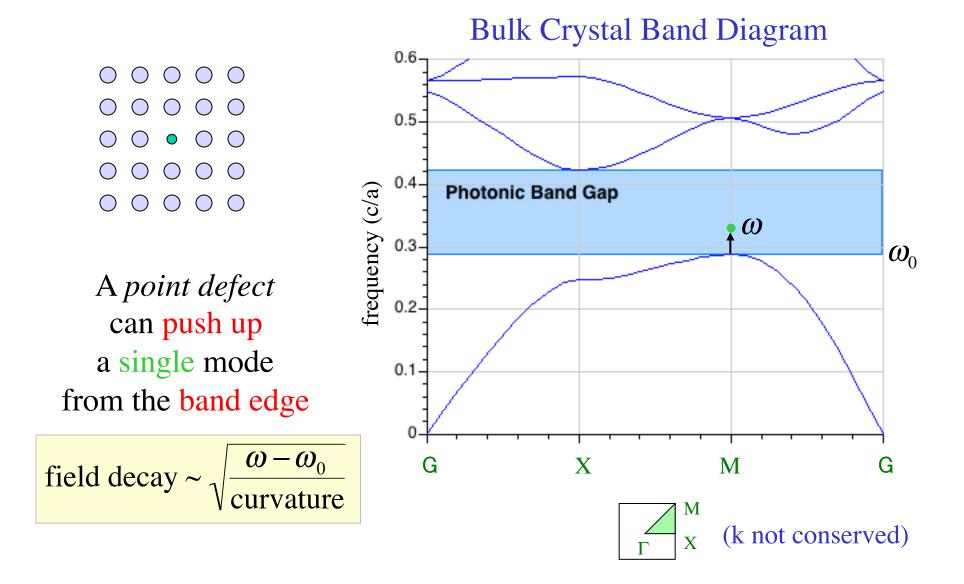
0.6 0.5 0.4 frequency (c/a) Photonic Band Gap 0.3 0.2 0.1 0 G Х Μ G Μ k Х G

Bulk Crystal Band Diagram

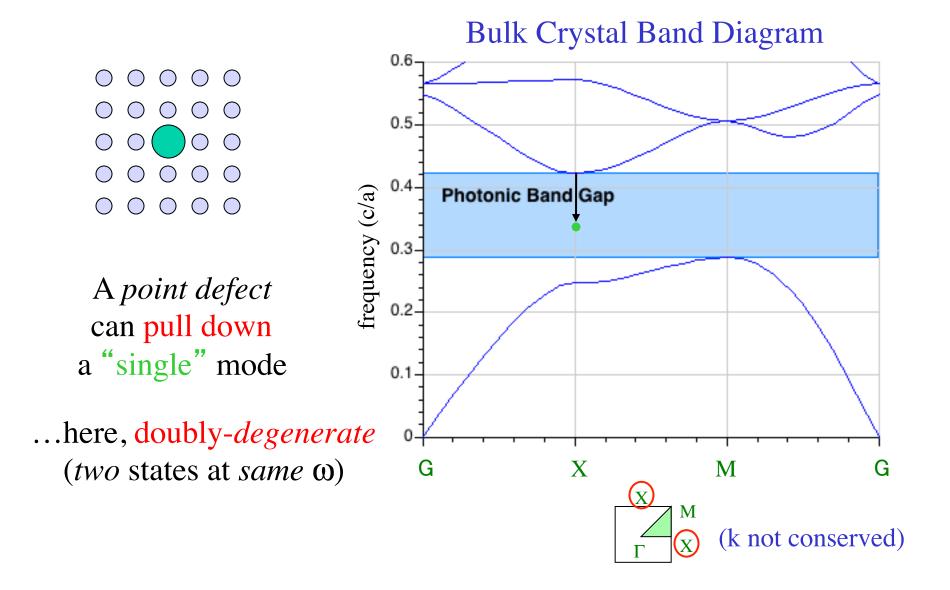
Cavity Modes: Smaller Change



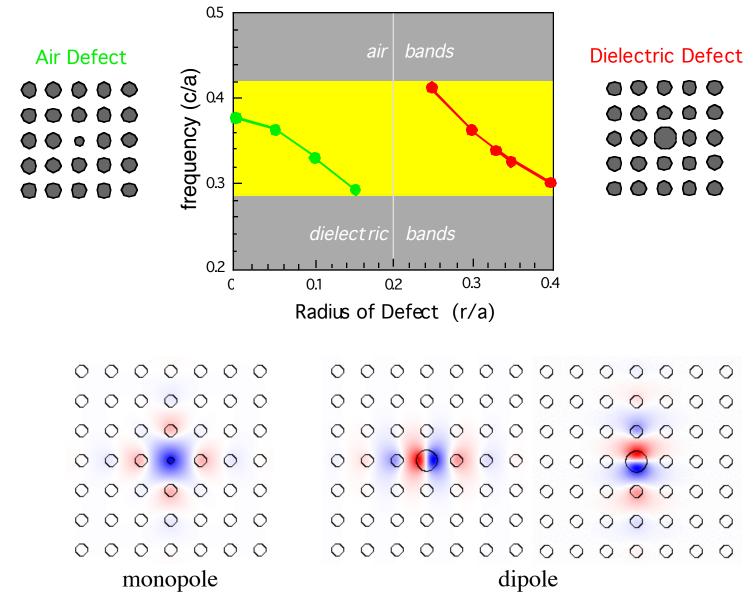
Single-Mode Cavity



"Single"-Mode Cavity

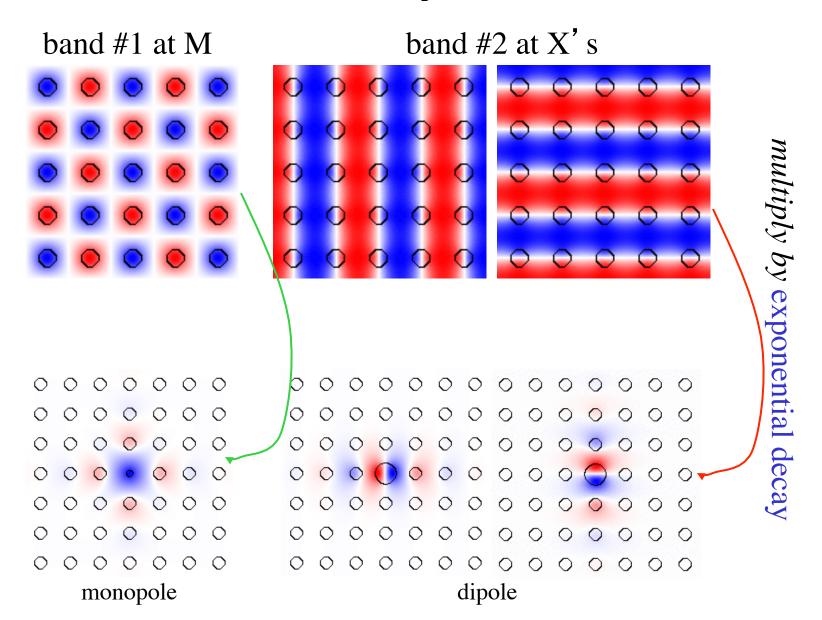


Tunable Cavity Modes



 E_z :

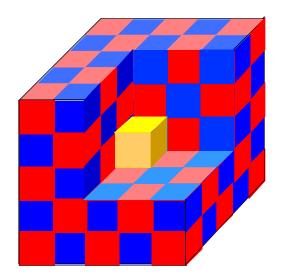
Tunable Cavity Modes



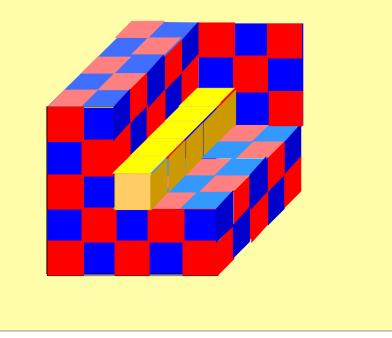
 E_z :

Intentional "defects" are good

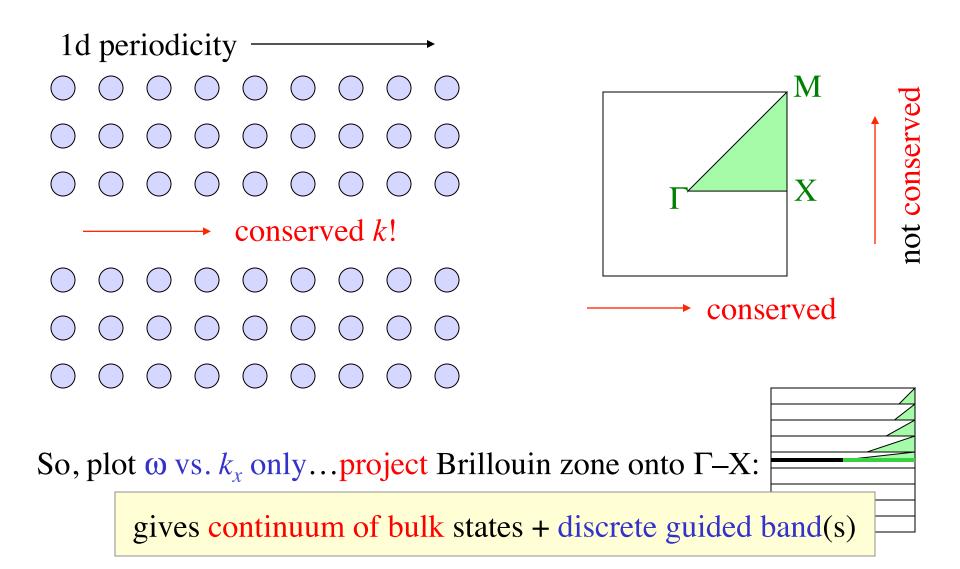
microcavities



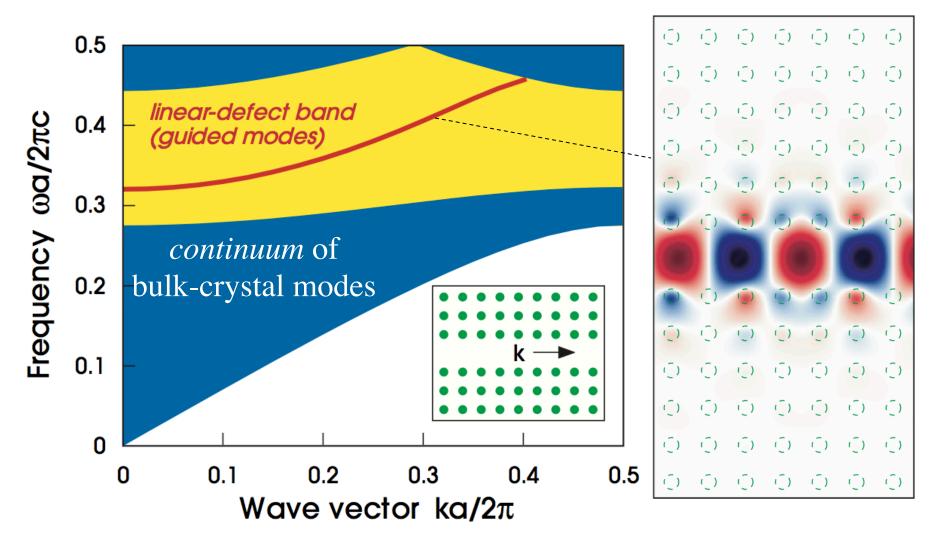
waveguides ("wires")



Projected Band Diagrams



Air-waveguide Band Diagram



any state in the gap cannot couple to bulk crystal \Rightarrow localized

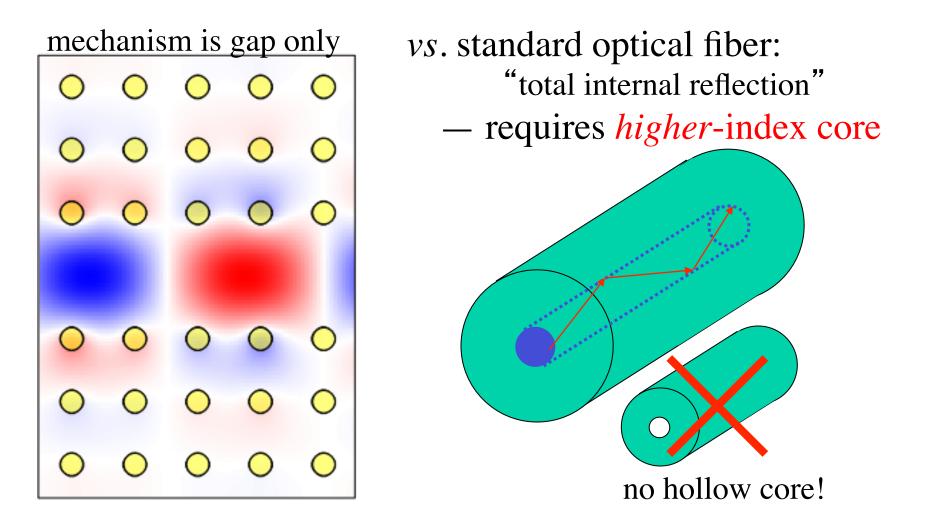
(Waveguides don't really need a *complete* gap)

Fabry-Perot waveguide:

		•
	_	
	•	

This is exploited *e.g.* for photonic-crystal fibers...

Guiding Light in Air!



hollow = lower absorption, lower nonlinearities, higher power

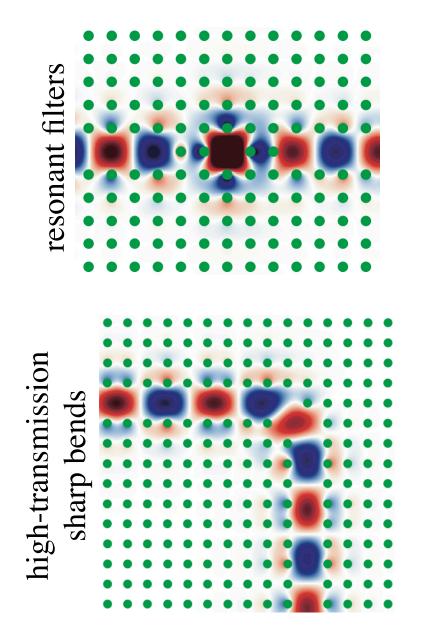
Review: Why no scattering?

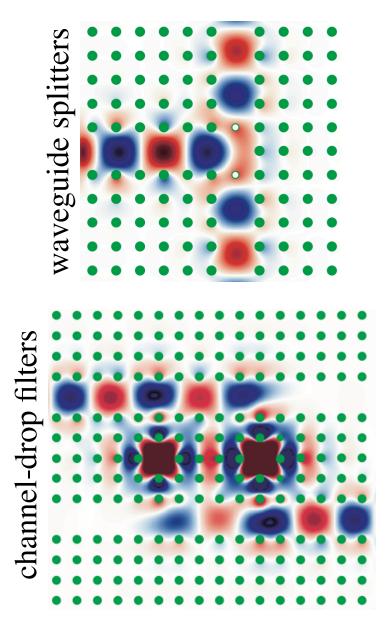
()()()()()()()()()()()()) () forbidden by Bloch (*k* conserved) \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc ()()

> forbidden by gap (except for finite-crystal tunneling)

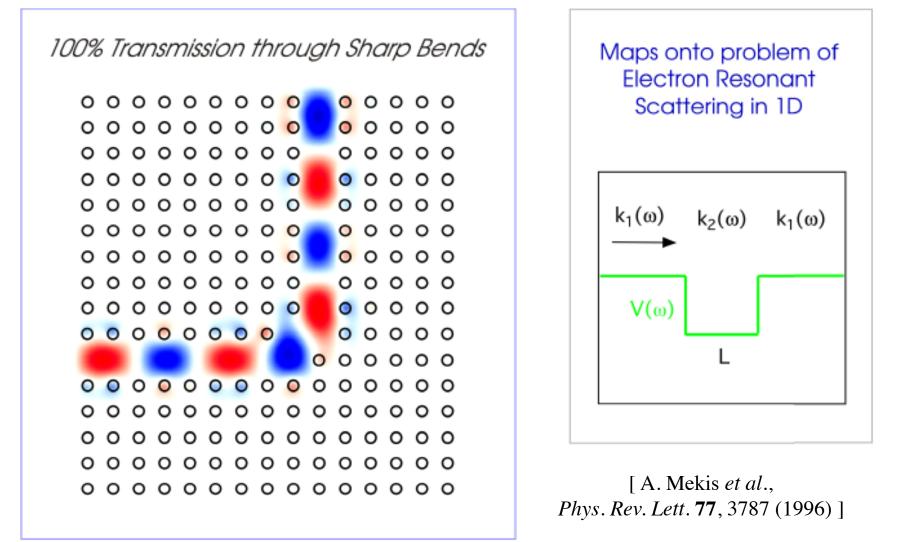
Benefits of a complete gap... ()()()()()() \bigcirc \bigcirc \bigcirc () \bigcirc ()() \bigcirc \bigcirc ()()()()() ())()()broken symmetry -> reflections only *effectively* one-dimensional

"1d" Waveguides + Cavities = Devices

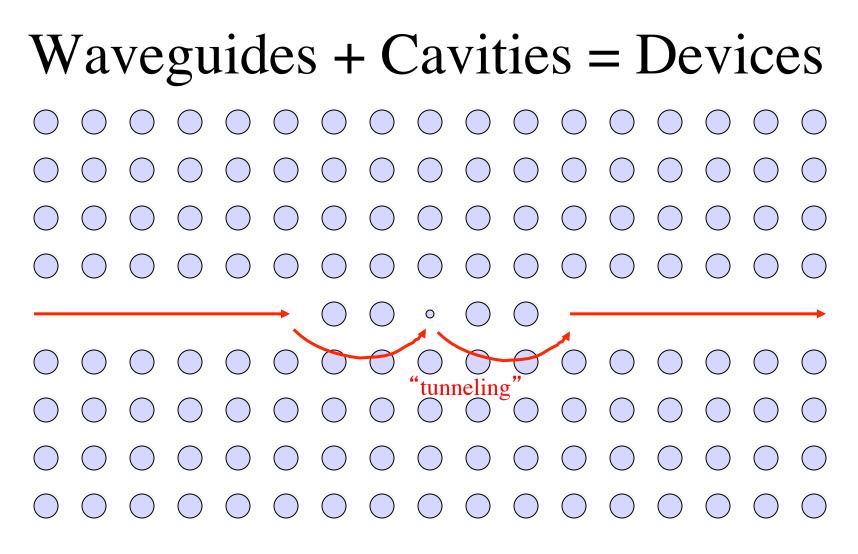




Lossless Bends



symmetry + single-mode + "1d" = resonances of 100% transmission



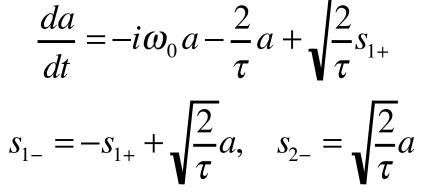
Ugh, must we simulate this to get the basic behavior?

Temporal Coupled-Mode Theory

(one of several things called of "coupled-mode theory")

[H. Haus, Waves and Fields in Optoelectronics]





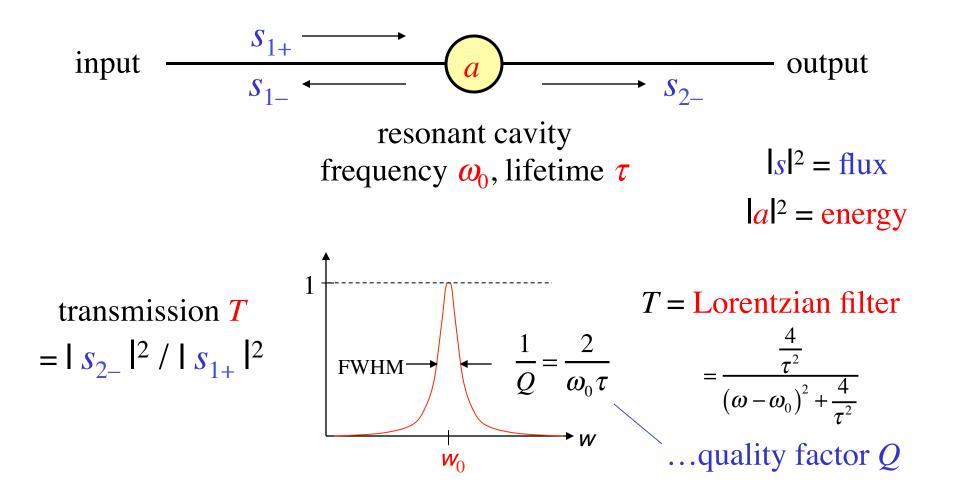
assumes only:

- exponential decay (strong confinement)
- conservation of energy
- time-reversal symmetry

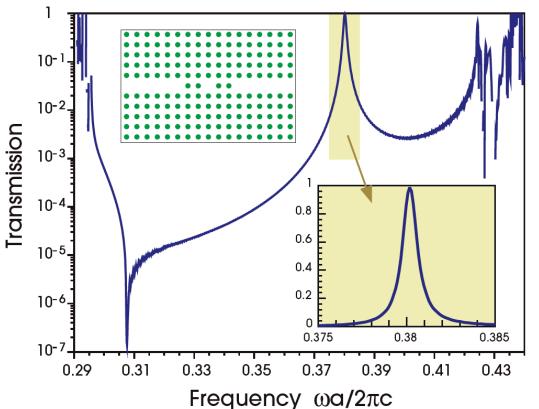
Temporal Coupled-Mode Theory

(one of several things called of "coupled-mode theory")

[H. Haus, Waves and Fields in Optoelectronics]



Resonant Filter Example

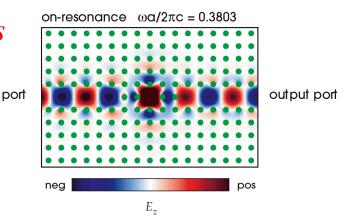


Lorentzian peak, as predicted.

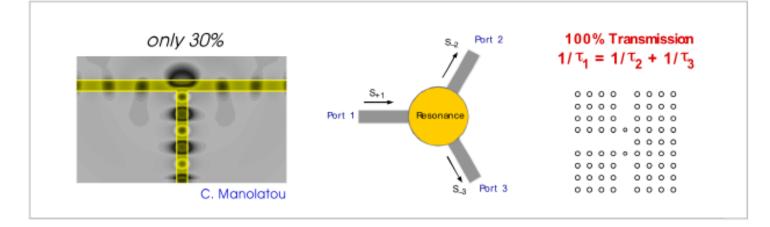
An apparent miracle:

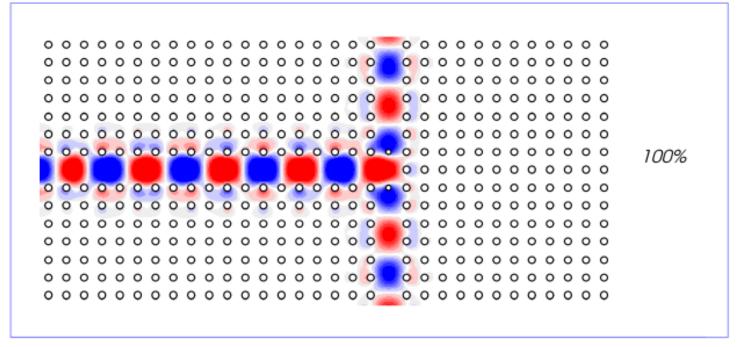
~ 100% transmission at the resonant frequency

cavity decays to input/output with *equal rates* ⇒ At resonance, reflected wave destructively interferes with backwards-decay from cavity & the two *exactly cancel*.



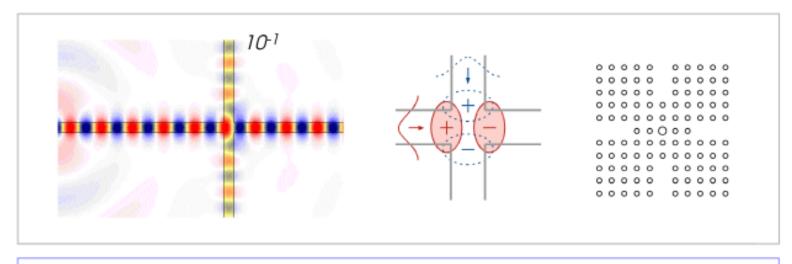
Wide-angle Splitters

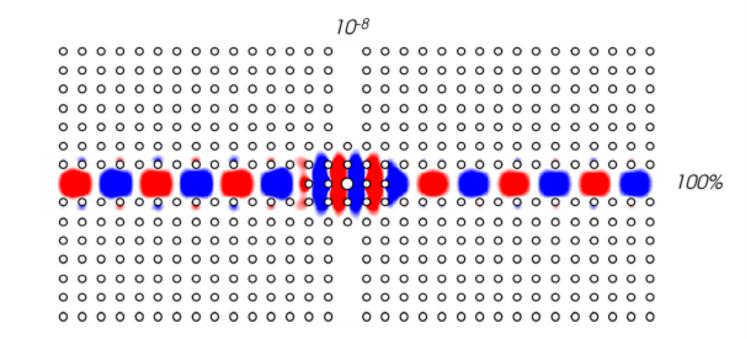




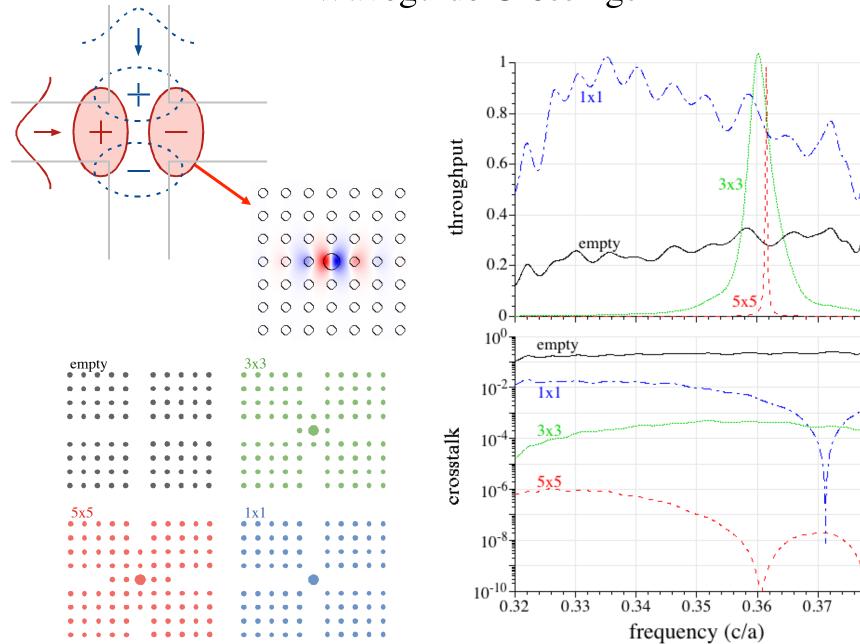
[S. Fan et al., J. Opt. Soc. Am. B 18, 162 (2001)]

Waveguide Crossings



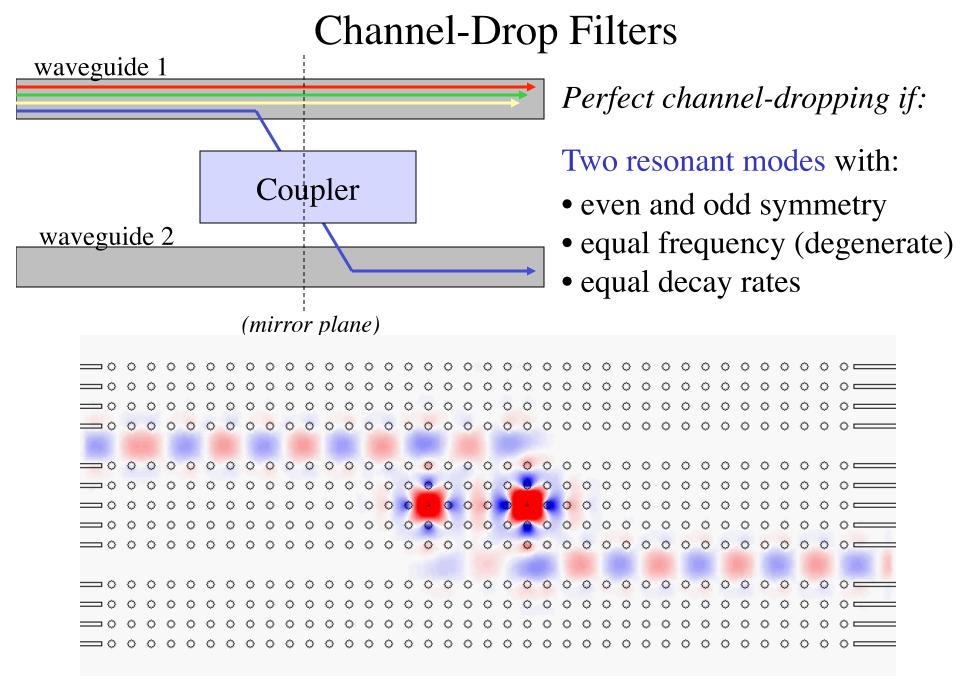


[S. G. Johnson *et al.*, *Opt. Lett.* **23**, 1855 (1998)]



0.38

Waveguide Crossings

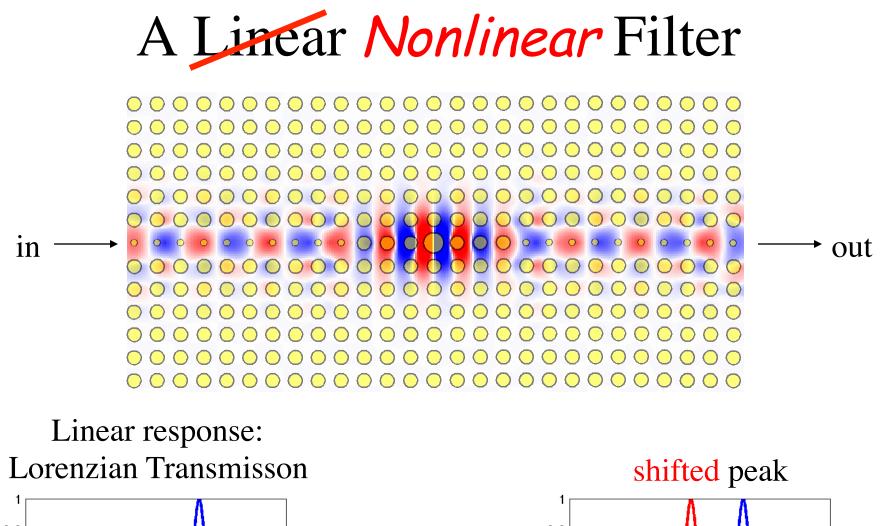


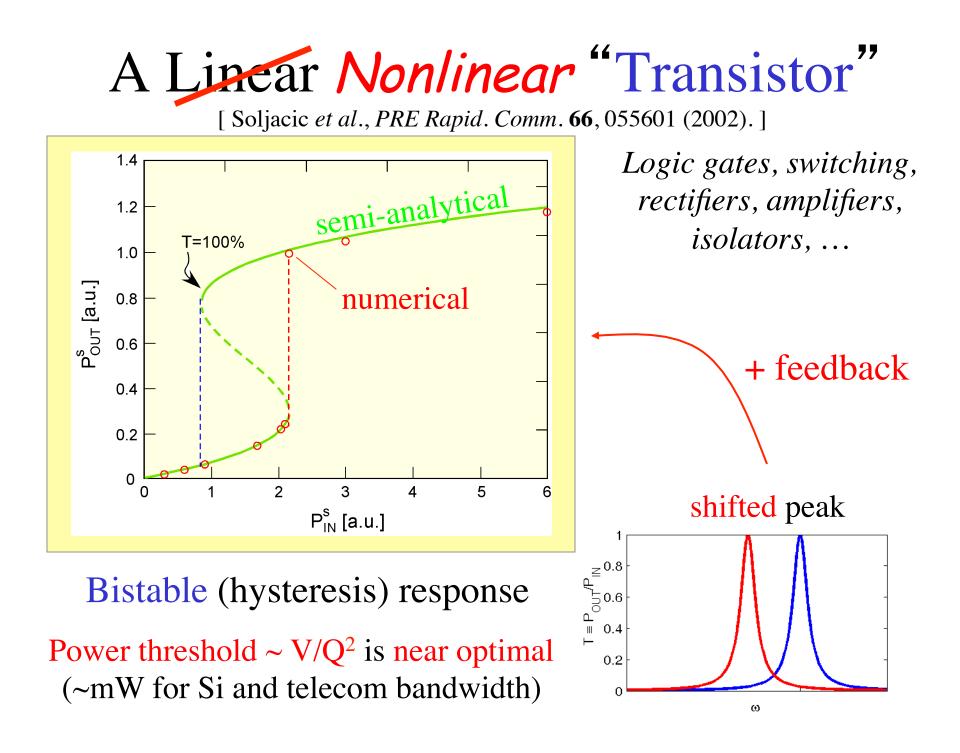
[S. Fan et al., Phys. Rev. Lett. 80, 960 (1998)]

Enough passive, linear devices...

Photonic crystal cavities: tight confinement (~ I/2 diameter) + long lifetime (high *Q* independent of size) = enhanced nonlinear effects

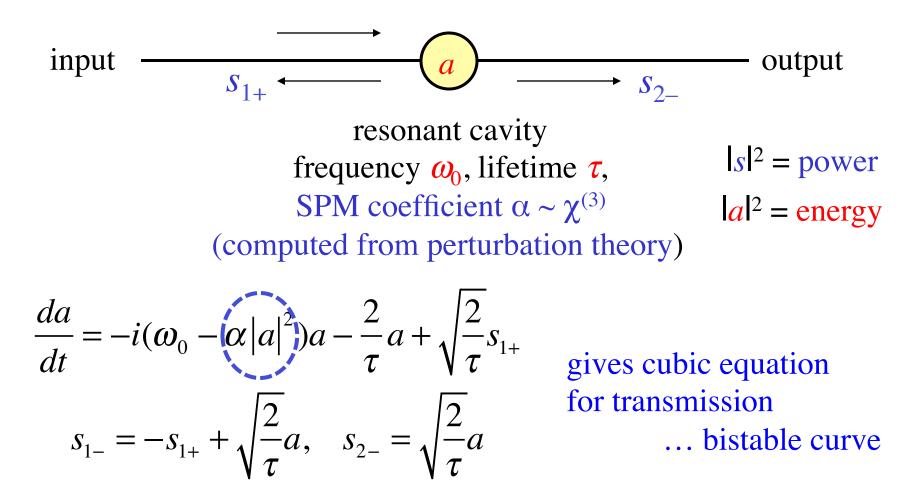
e.g. Kerr nonlinearity, $\Delta n \sim intensity$



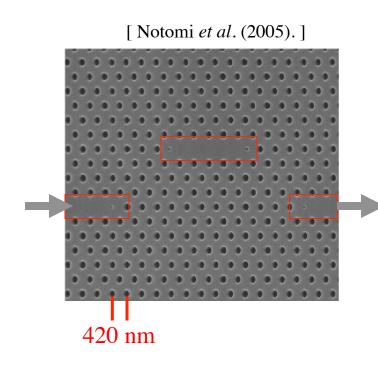


TCMT for Bistability

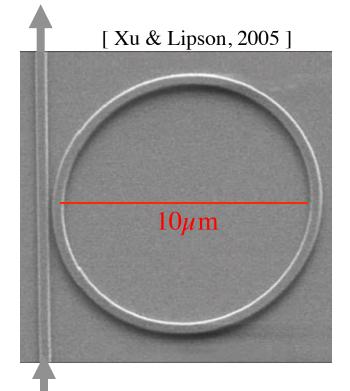
[Soljacic et al., PRE Rapid. Comm. 66, 055601 (2002).]



Experimental Nonlinear Switches



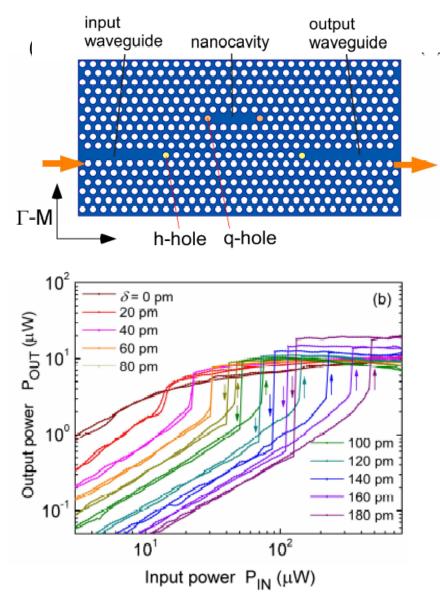
 $Q \sim 30,000$ V ~ 10 optimum Power threshold ~ 40 μ W

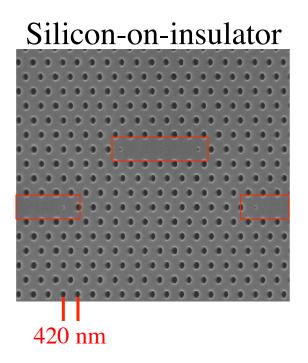


Q ~ 10,000 V ~ 300 optimum Power threshold ~ 10 mW

Experimental Bistable Switch

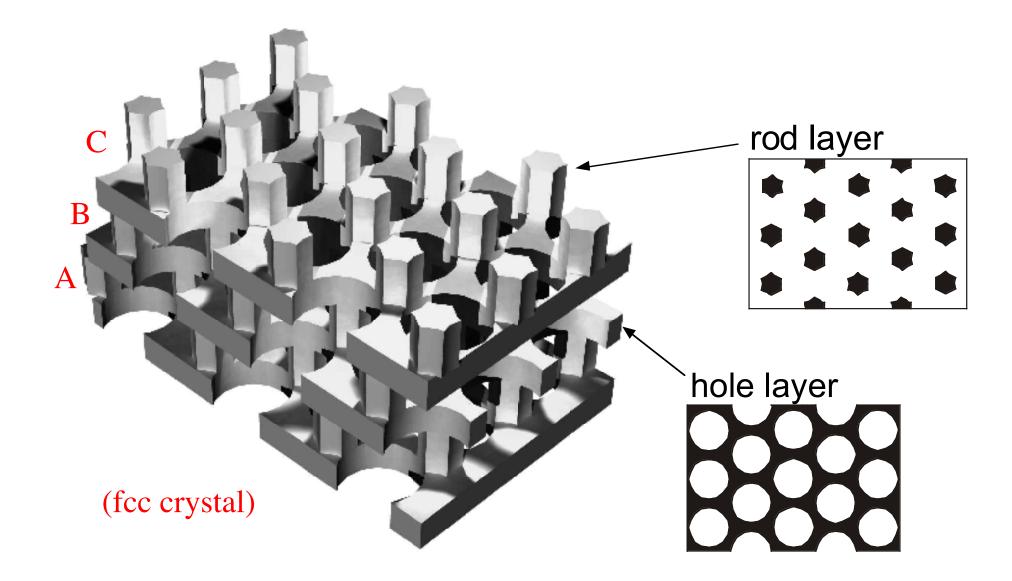
[Notomi et al., Opt. Express 13 (7), 2678 (2005).]





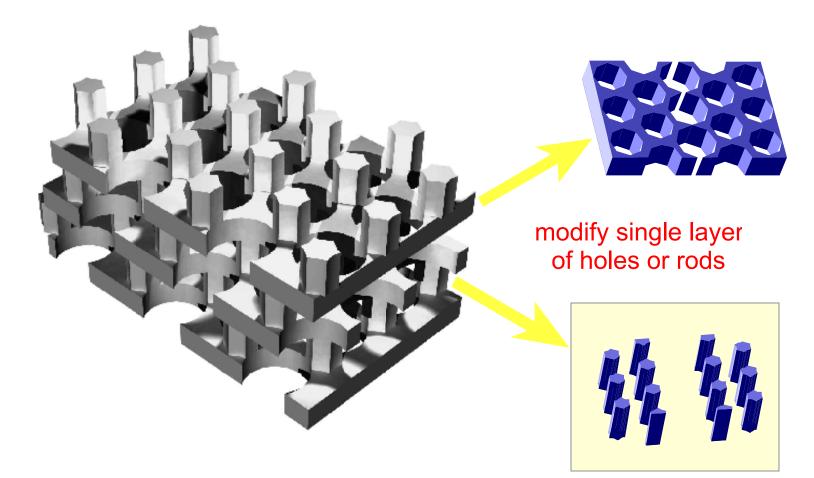
 $Q \sim 30,000$ Power threshold ~ 40 μ W Switching energy ~ 4 pJ

Same principles apply in 3d...

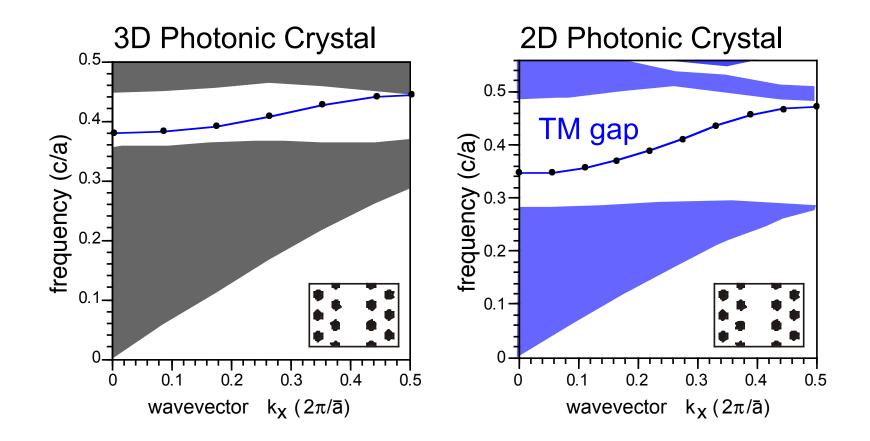


2d-like defects in 3d

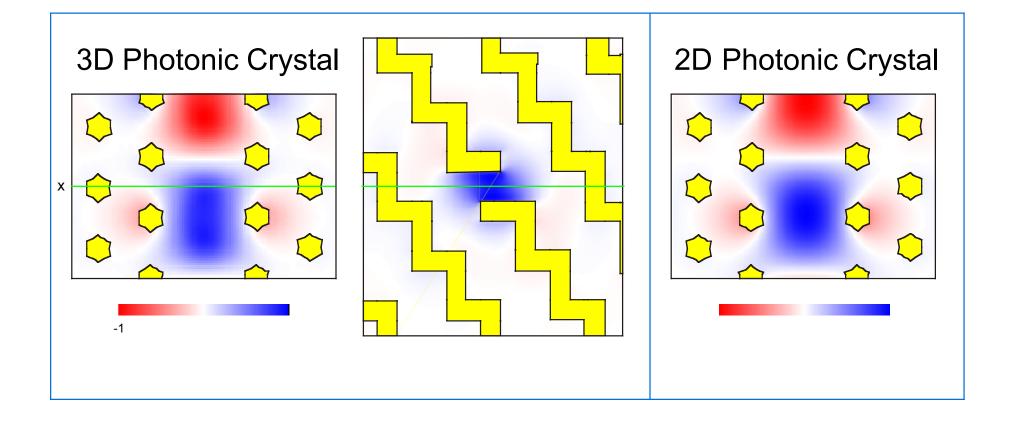
[M. L. Povinelli et al., Phys. Rev. B 64, 075313 (2001)]



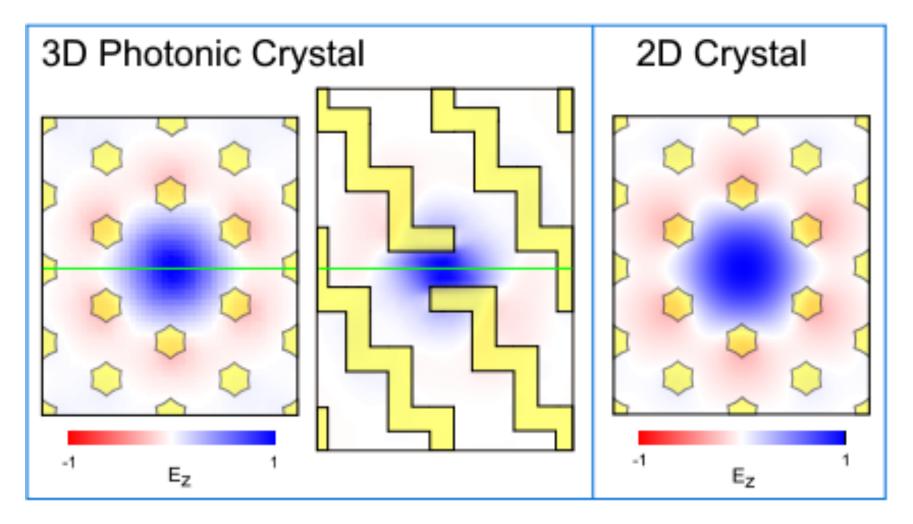
3d projected band diagram



2d-like waveguide mode



2d-like cavity mode



The Upshot

To design an interesting device, you need only:

symmetry + single-mode (usually)

+ resonance

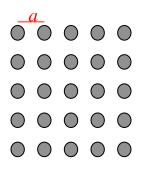
+ (ideally) a band gap to forbid losses

Oh, and a full Maxwell simulator to get Q parameters, etcetera.

Outline

- Preliminaries: waves in periodic media
- Photonic crystals in theory and practice
- Bulk crystal properties
- Intentional defects and devices
- Index-guiding and incomplete gaps
- Photonic-crystal fibers
- Perturbations, tuning, and disorder

Review: Bloch Basics



 $\hat{\Theta}_{\vec{k}}$

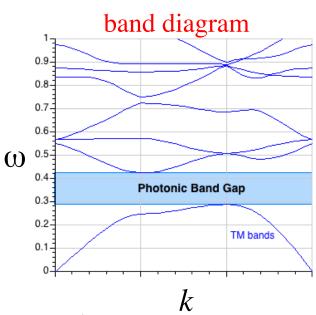
Waves in periodic media can have:

- propagation with no scattering (conserved **k**)
 - photonic band gaps (with proper ε function)

Eigenproblem gives simple insight:

Bloch form:
$$\vec{H} = e^{i(\vec{k}\cdot\vec{x}-\omega t)}\vec{H}_{\vec{k}}(\vec{x})$$

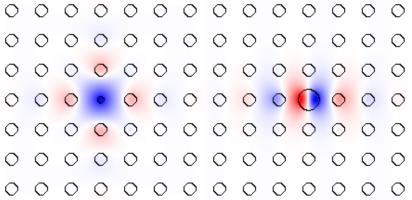
 $\left[(\vec{\nabla}+i\vec{k})\times\frac{1}{\varepsilon}(\vec{\nabla}+i\vec{k})\times\right]\vec{H}_{\vec{k}} = \left(\frac{\omega_n(\vec{k})}{c}\right)^2\vec{H}_{\vec{k}}$



Hermitian -> complete, orthogonal, variational theorem, *etc*.

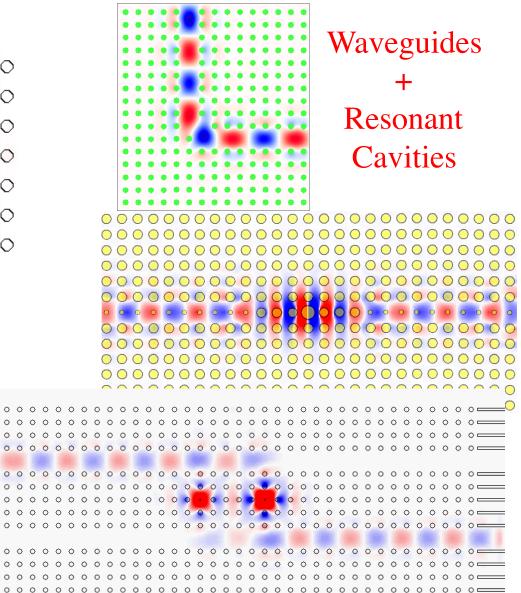
Review: Defects and Devices

Point defects = Cavities

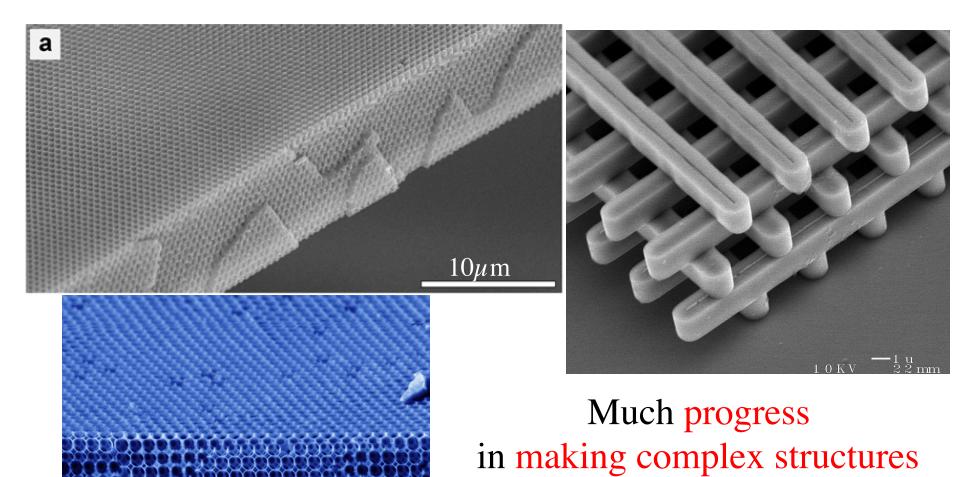


Line defects = Waveguides

0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0



Review: 3d Crystals and Fabrication



2 µm

incorporation of defects & devices still in early stages

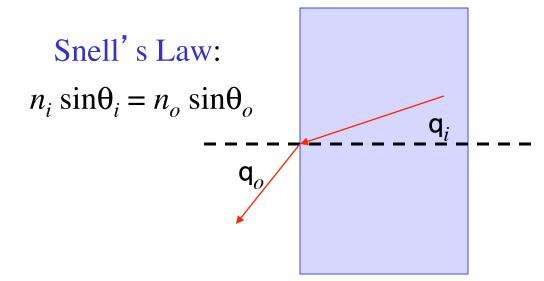
How *else* can we confine light?

Total Internal Reflection

 n_o

 $n_i > n_o$

rays at shallow angles > θ_c are totally reflected



 $\sin \theta_c = n_o / n_i$
< 1, so θ_c is real

i.e. TIR can only guide within higher index unlike a band gap

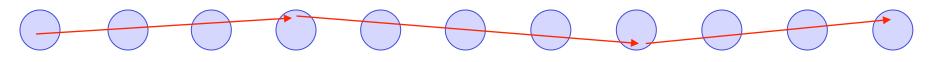
Total Internal Reflection?

 n_o

 $n_i > n_o$

rays at shallow angles > θ_c are totally reflected

So, for example, a discontiguous structure can't possibly guide by TIR...



the rays can't stay inside!

Total Internal Reflection?

 n_o

 $n_i > n_o$

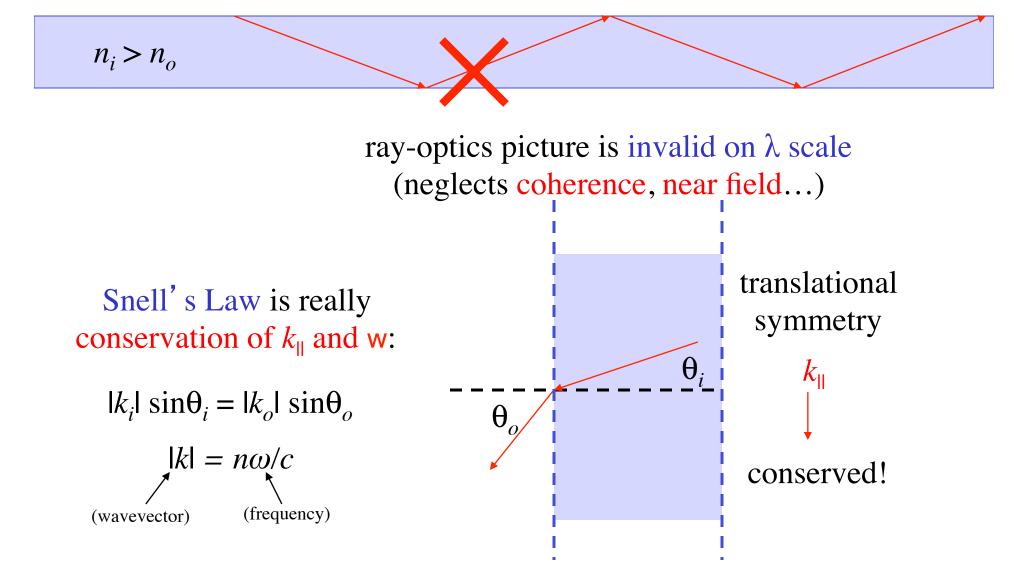
rays at shallow angles > θ_c are totally reflected

So, for example, a discontiguous structure can't possibly guide by TIR...

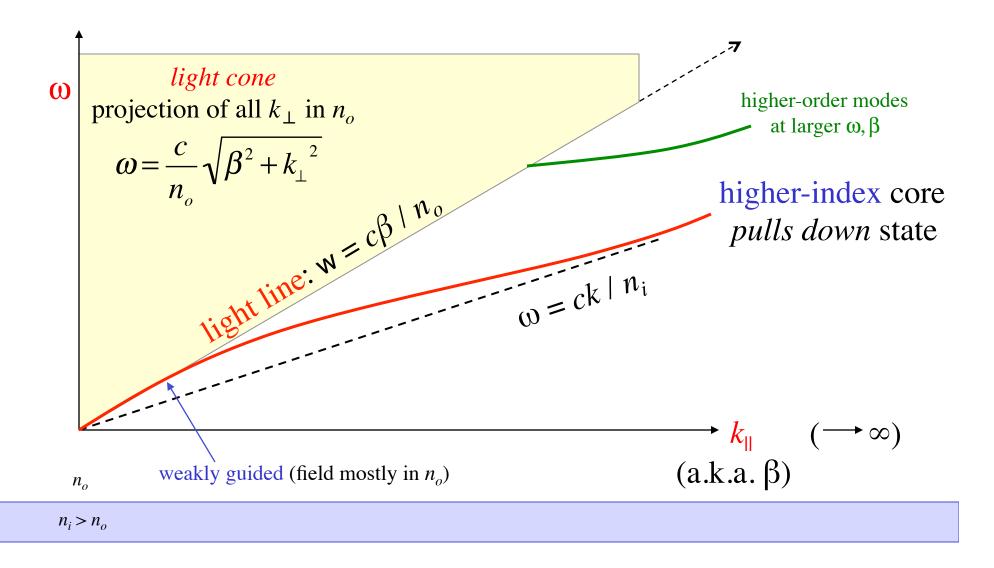
O<

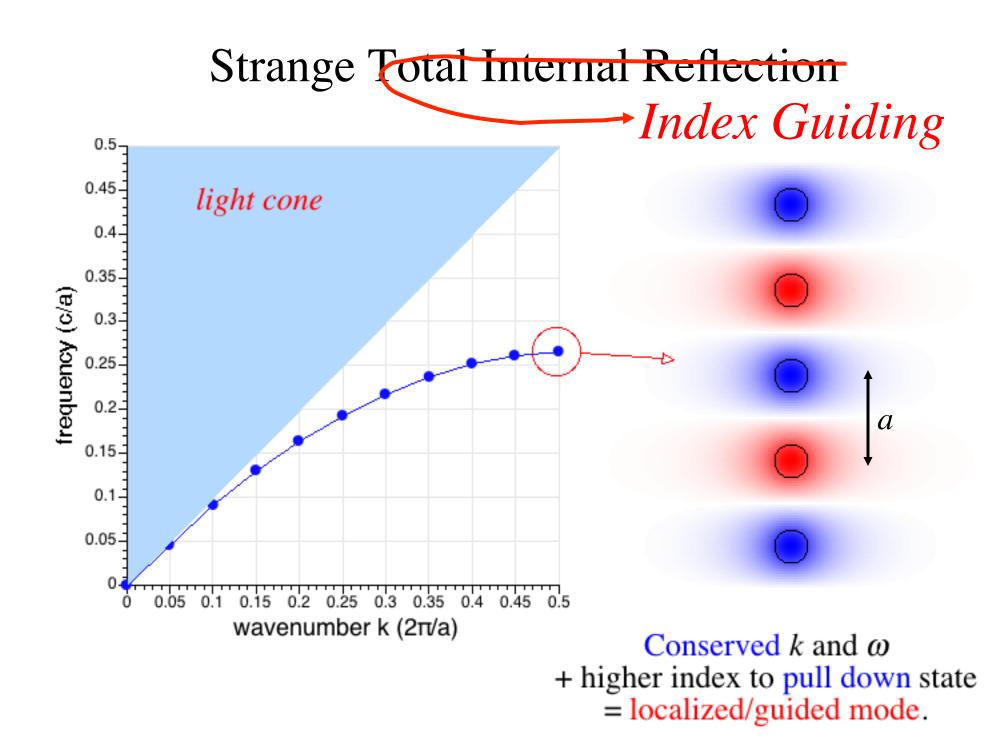
Total Internal Reflection Redux

 n_o



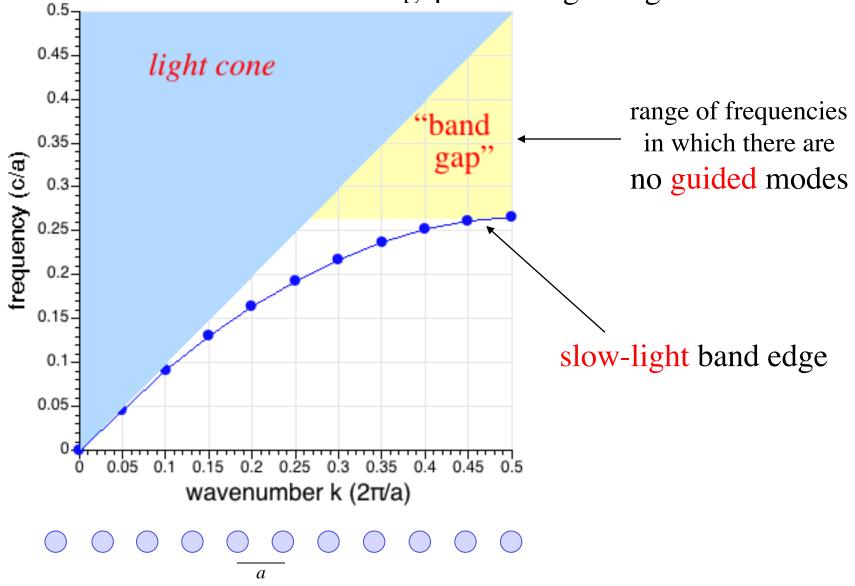
Waveguide Dispersion Relations *i.e.* projected band diagrams

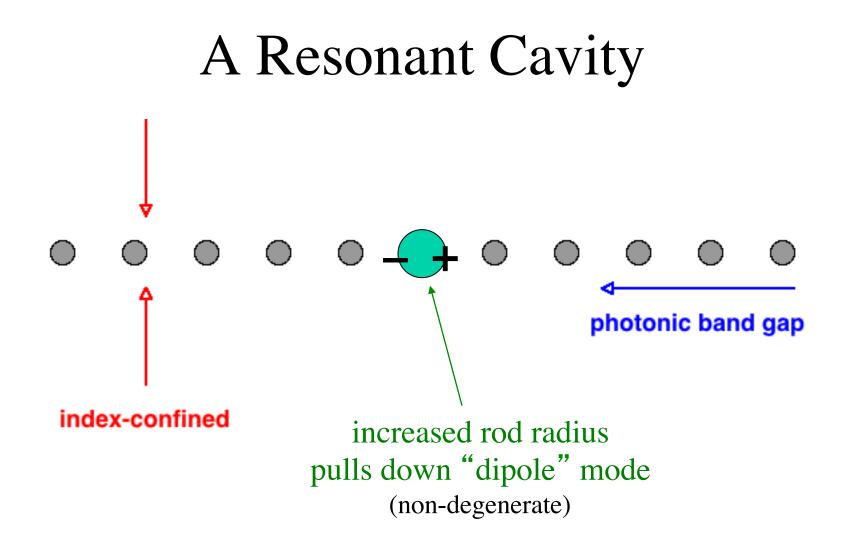


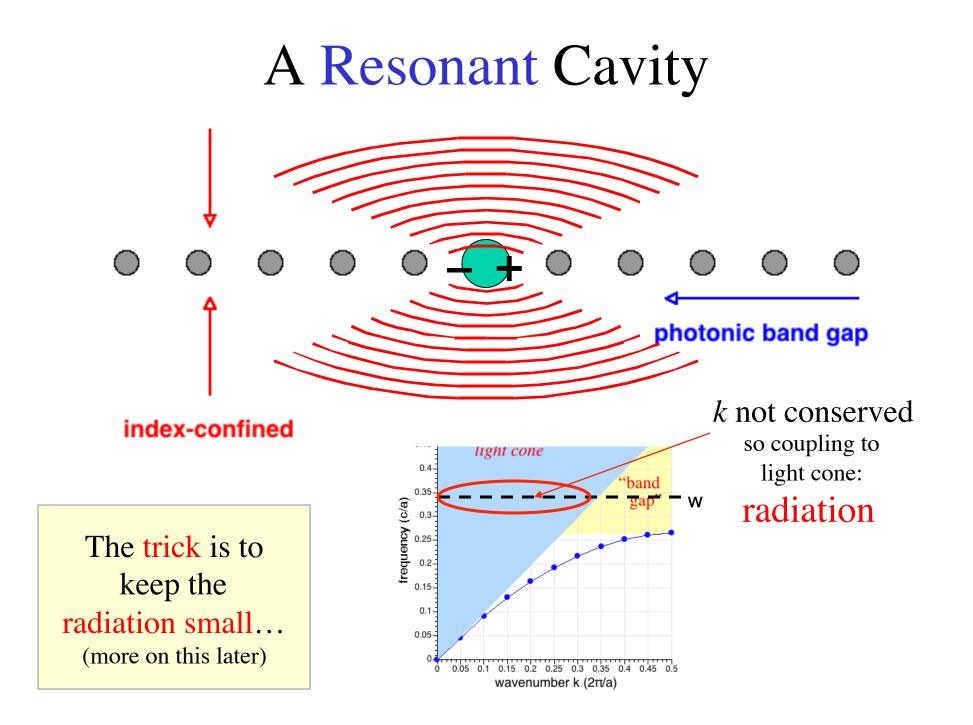


A Hybrid Photonic Crystal:

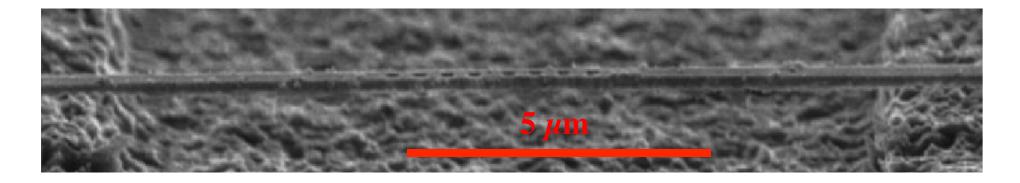
1d band gap + index guiding

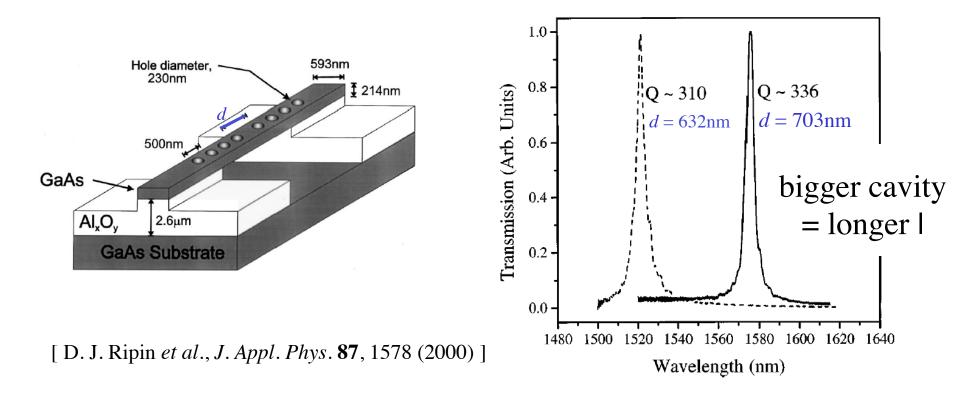






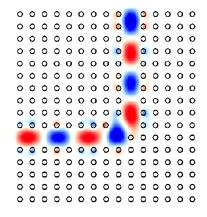
Meanwhile, back in reality... Air-bridge Resonator: 1d gap + 2d index guiding

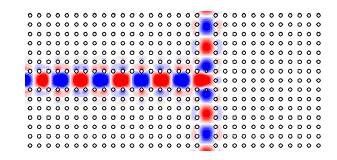


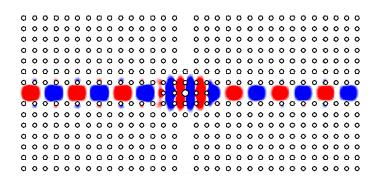


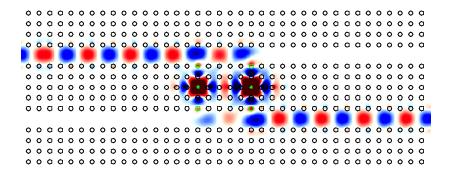
Time for Two Dimensions...

2d is all we really need for many interesting devices ...darn *z* direction!

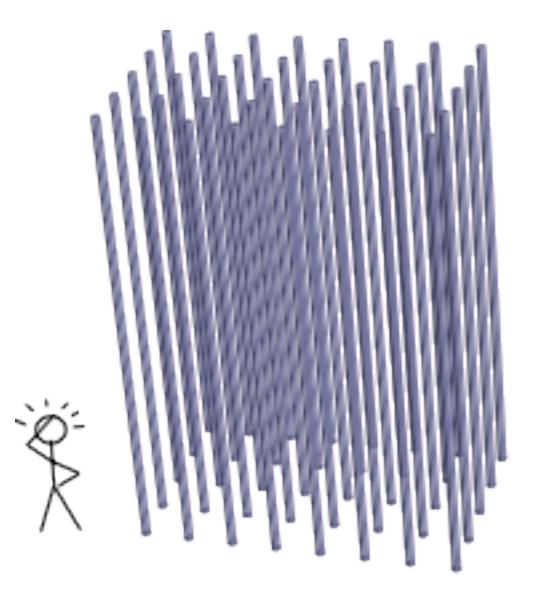








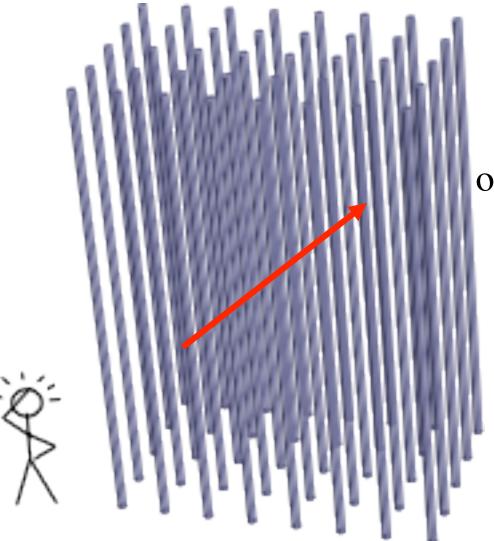
How do we make a 2d bandgap?



Most obvious solution?

make 2d pattern *really* tall

How do we make a 2d bandgap?

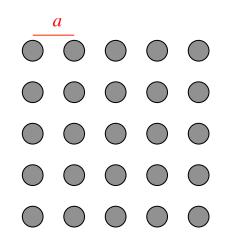


If height is finite, we must couple to out-of-plane wavevectors...

 k_z not conserved

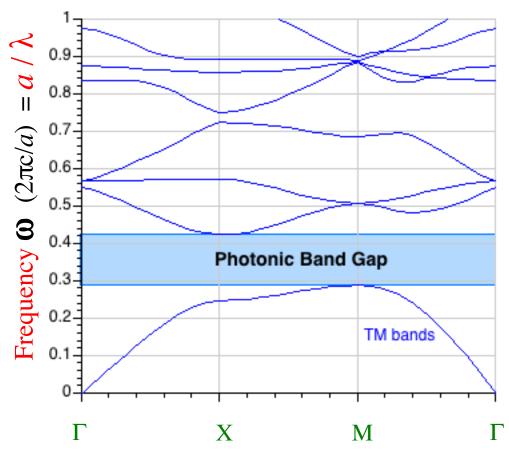
A 2d band diagram in 3d?

Recall the 2d band diagram: ... what happens in 3d?

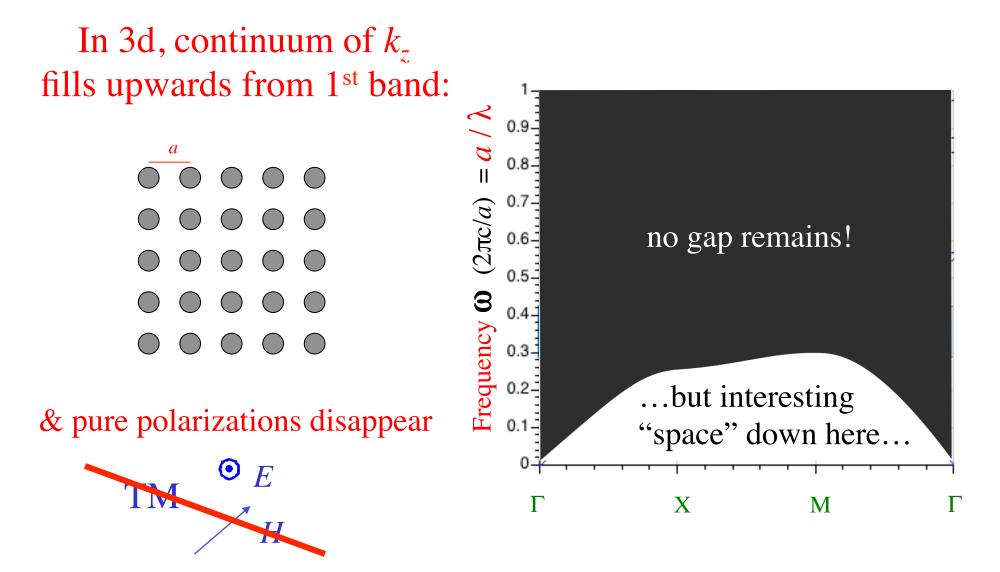


& what about polarization?

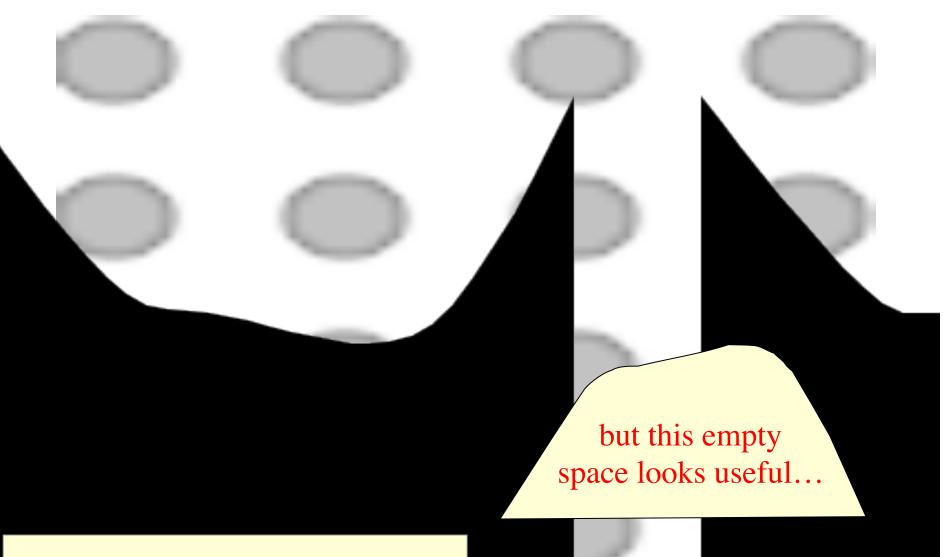
TM
$$\begin{array}{c} \odot E \\ H \end{array}$$



A 2d band diagram in 3d



A 2d band diagram in 3d

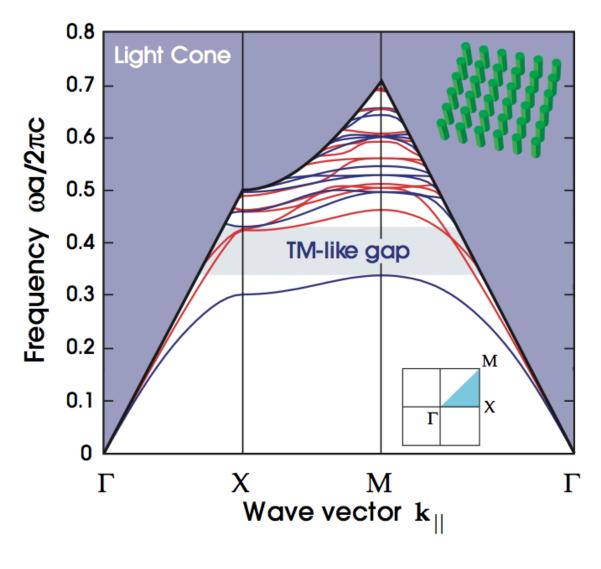


projected band diagram fills gap!

2d photonic bandgap + vertical index guiding

[J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, *Photonic Crystals: Molding the Flow of Light*, 2nd edition, chapter 8]

Rod-Slab Projected Band Diagram



Light cone = all solutions in medium above/below slab

Guided modes below light cone = no radiation

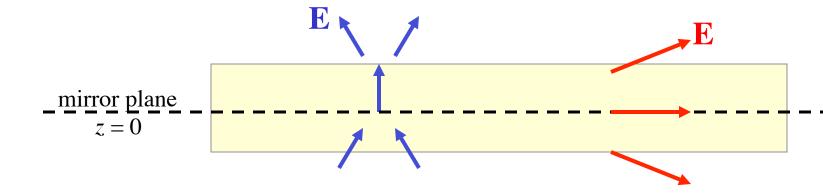
Two "polarizations:" TM-like & TE-like

"Gap" in guided modes ... *not* a complete gap

Slab thickness is crucial to obtain gap...

Slab symmetry & "polarization"

2d: TM and TE modes



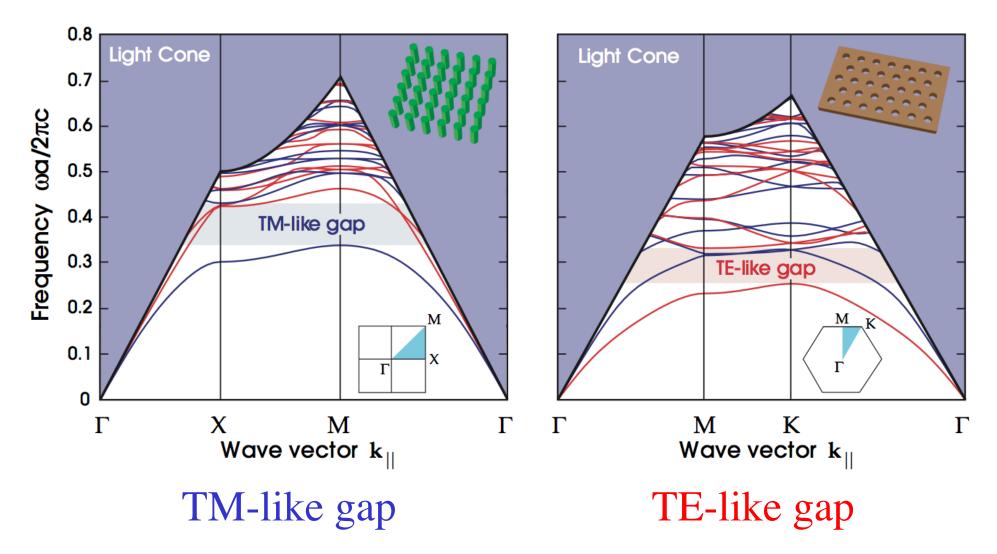
slab: odd (TM-like) and even (TE-like) modes

Like in 2d, there may only be a band gap in one symmetry/polarization

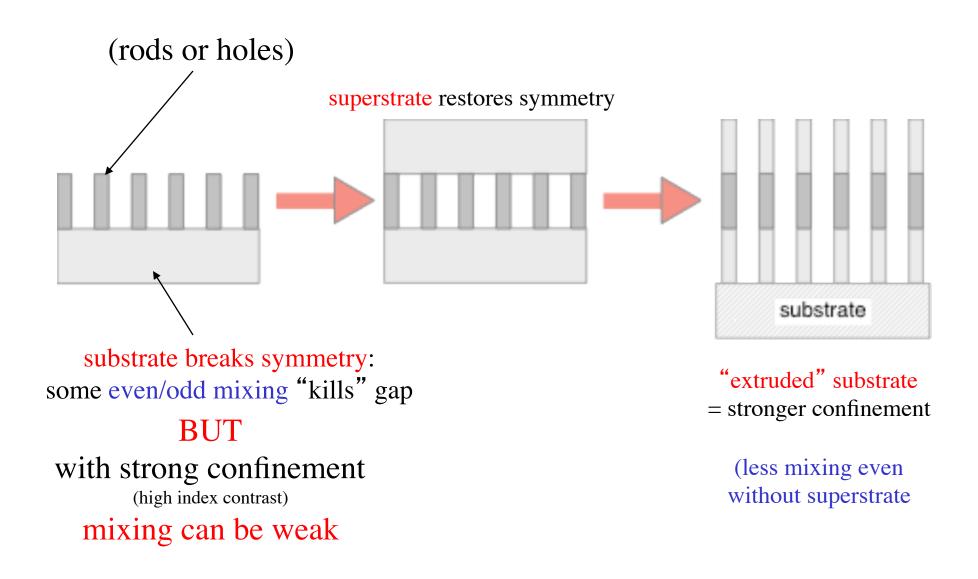
Slab Gaps

Rod slab

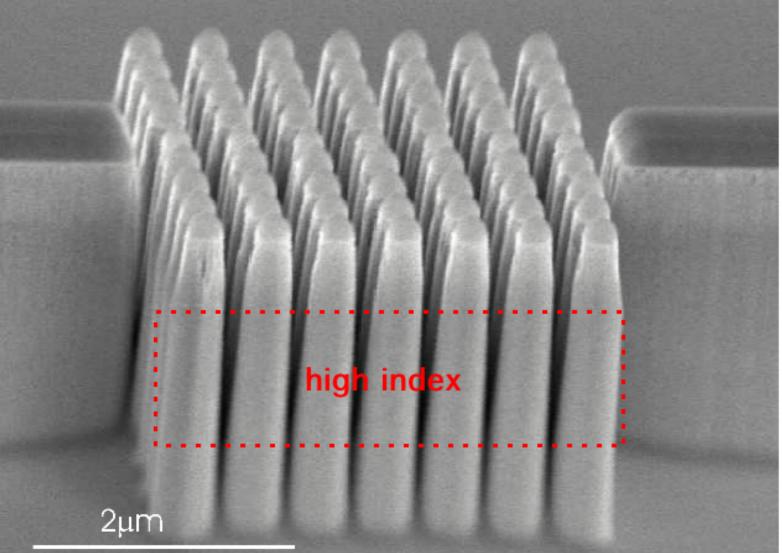
Hole slab



Substrates, for the Gravity-Impaired



Extruded Rod Substrate

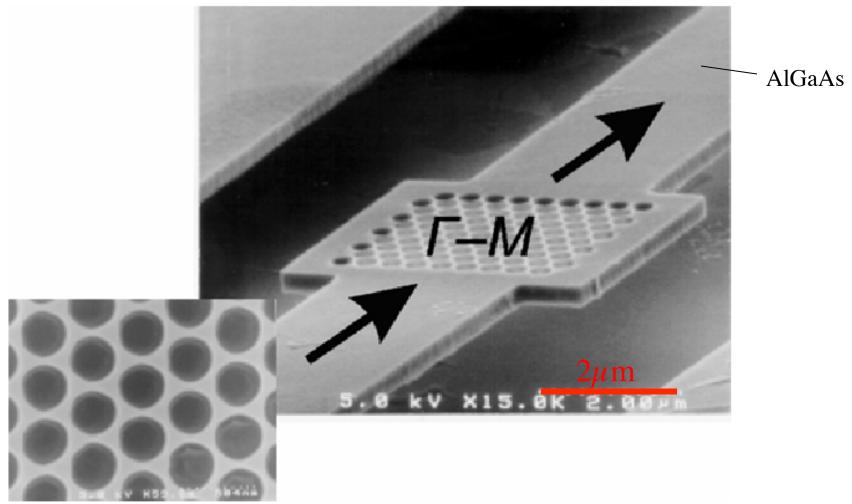


S. Assefa, L. A. Kolodziejski

(GaAs on AlO_x) [S. Assefa *et al.*, *APL* **85**, 6110 (2004).]

Air-membrane Slabs

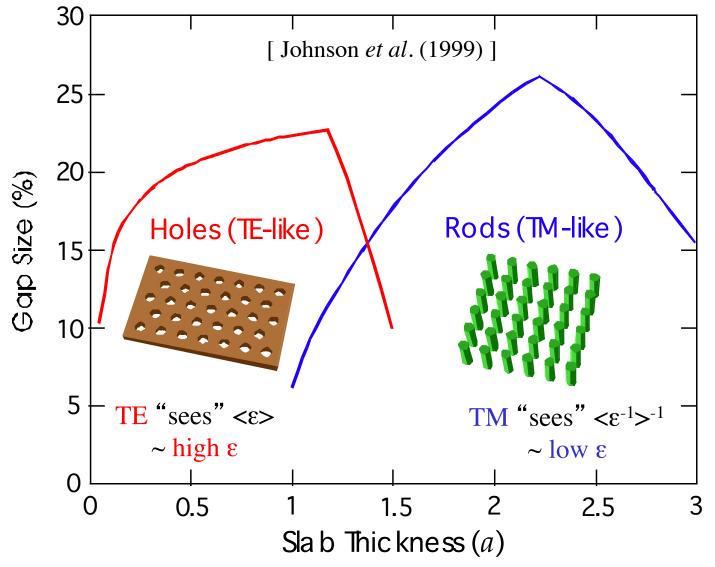
who needs a substrate?



[N. Carlsson et al., Opt. Quantum Elec. 34, 123 (2002)]

Optimal Slab Thickness $\sim \lambda/2$, but $\lambda/2$ in what material?

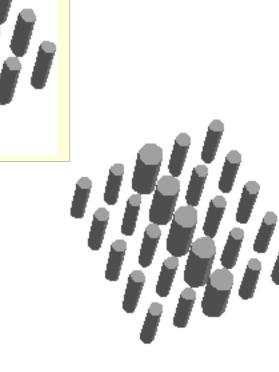
effective medium theory: effective ε depends on polarization



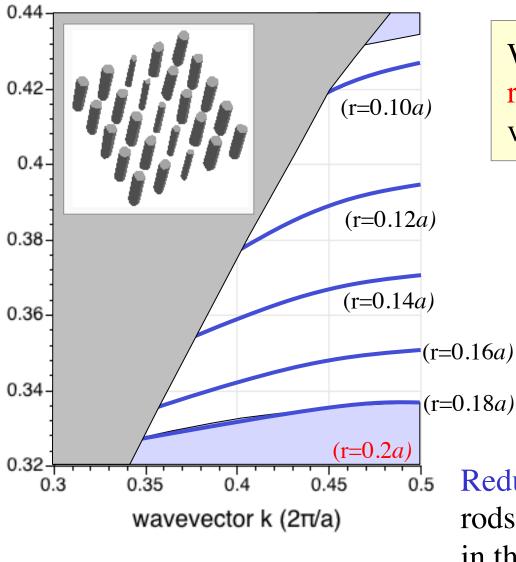
Photonic-Crystal Building Blocks

point defects (cavities) line defects (waveguides)





A Reduced-Index Waveguide

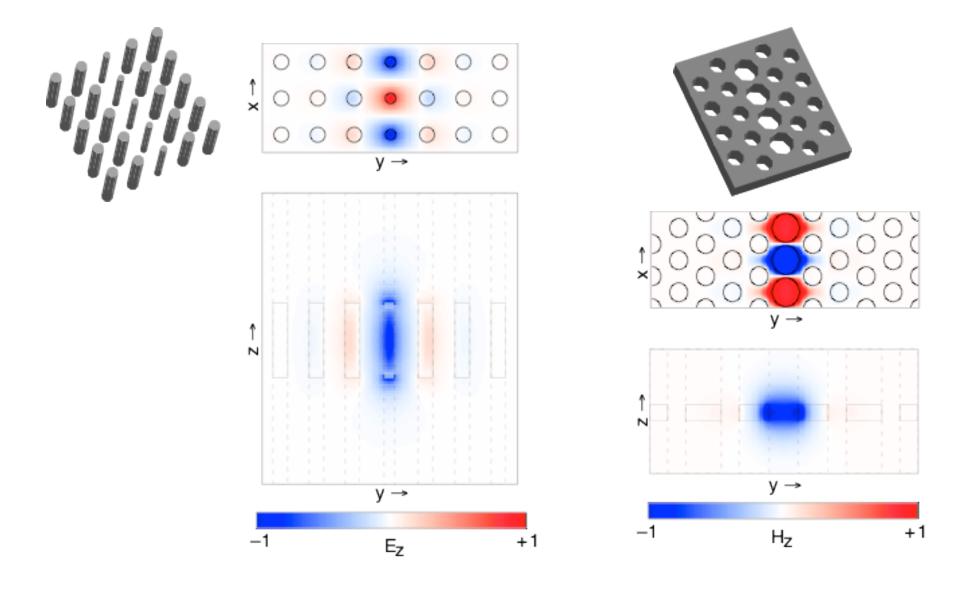


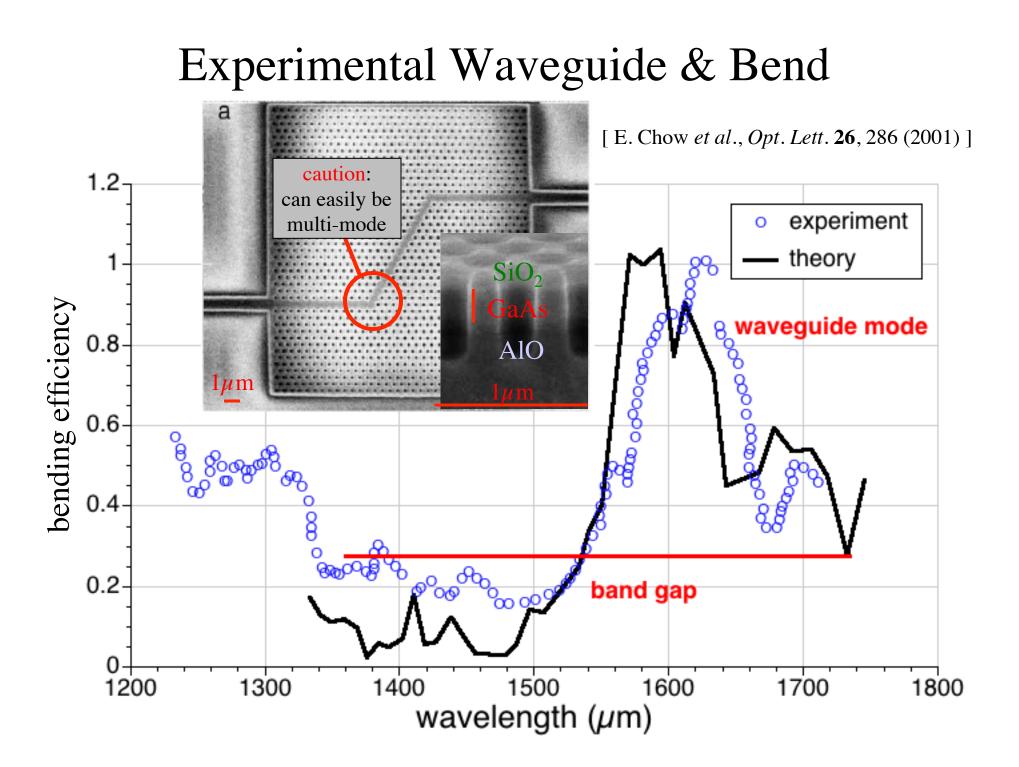
We *cannot* completely remove the rods—no vertical confinement!

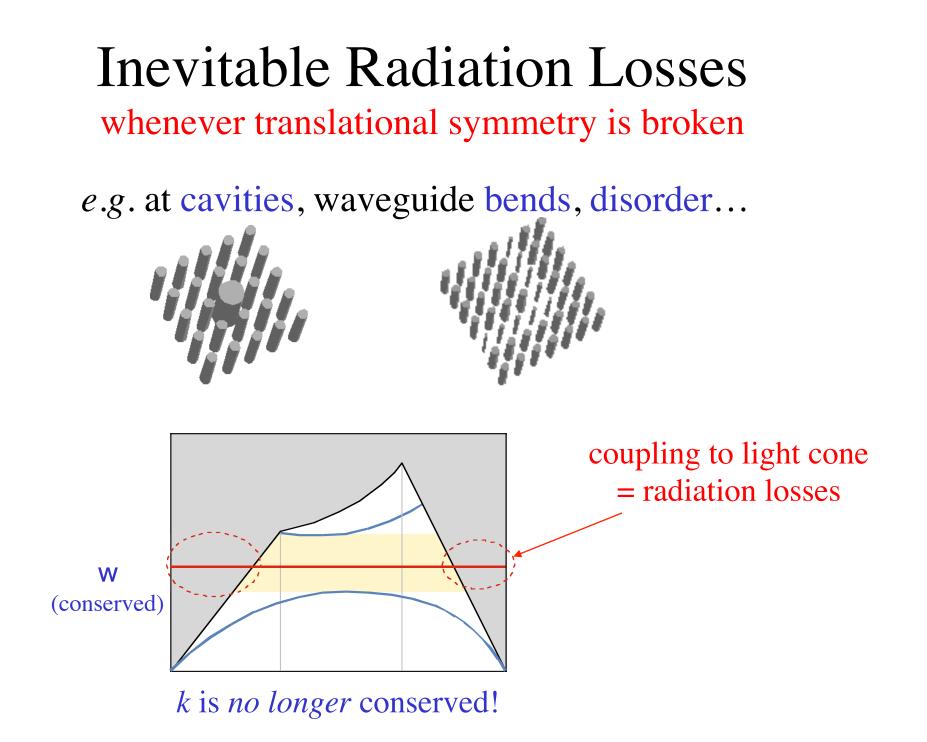
> Still have conserved wavevector—under the light cone, no radiation

Reduce the radius of a row of rods to "trap" a waveguide mode in the gap.

Reduced-Index Waveguide Modes





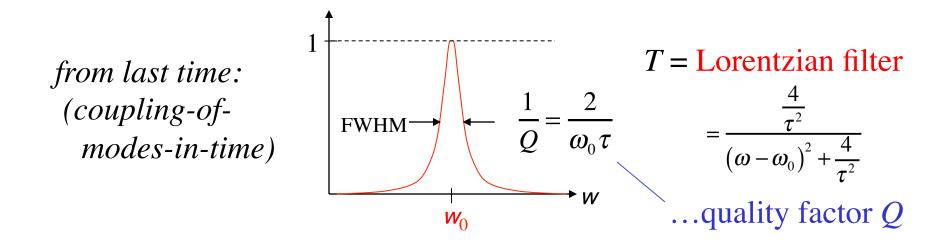


Dimensionless Losses: Q

quality factor Q = # optical periods for energy to decay by $exp(-2\pi)$

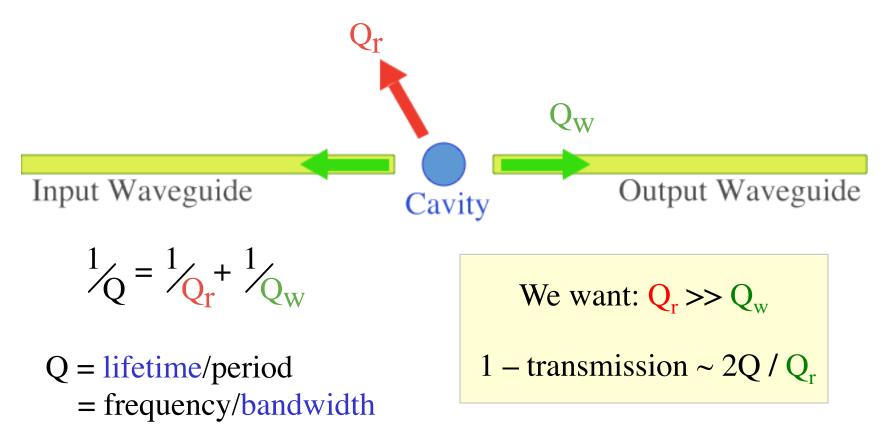
energy ~ $\exp(-\omega t/Q)$

in frequency domain: 1/Q = bandwidth



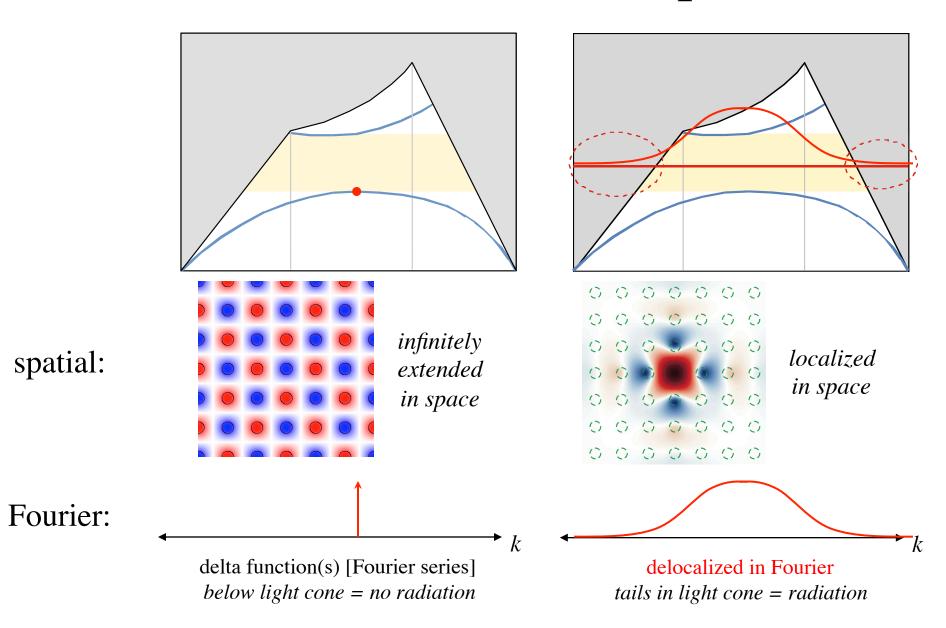
All Is Not Lost

A simple model device (filters, bends, ...):



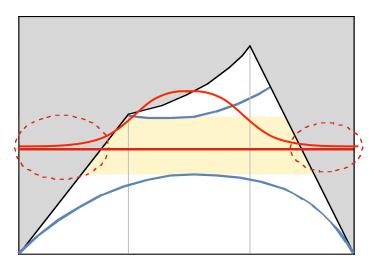
worst case: high-Q (narrow-band) cavities

Radiation loss: A Fourier picture

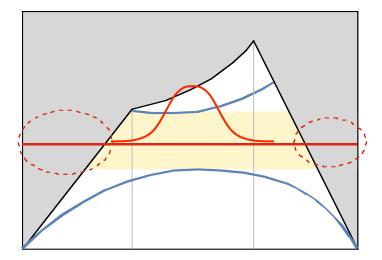


A tradeoff: Localization vs. Loss

"Uncertainty principle:" *less spatial* localization = *more Fourier* localization = less radiation loss

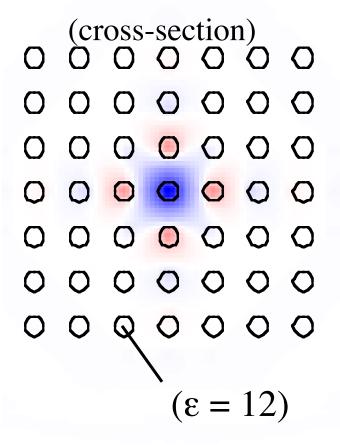


stronger spatial localization

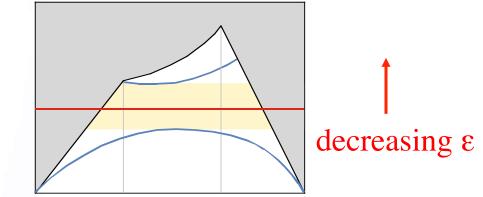


weaker spatial localization

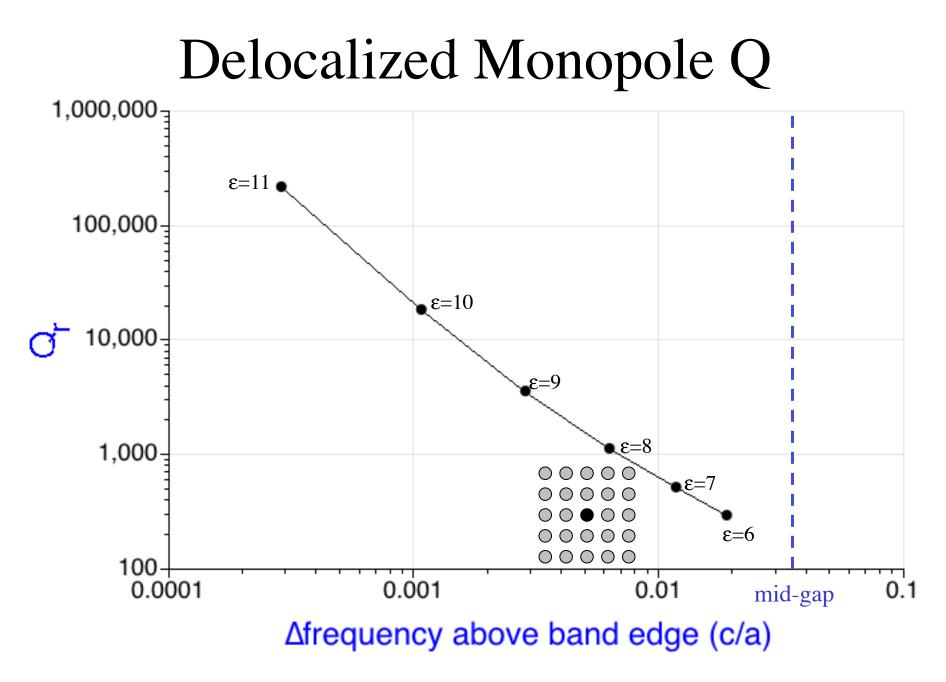
Monopole Cavity in a Slab



Lower the ε of a single rod: push up a monopole (singlet) state.

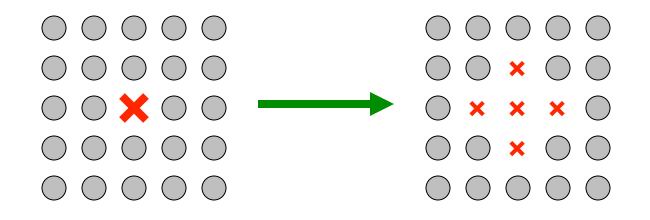


Use small $\Delta \epsilon$: delocalized in-plane, & high-Q (we hope)



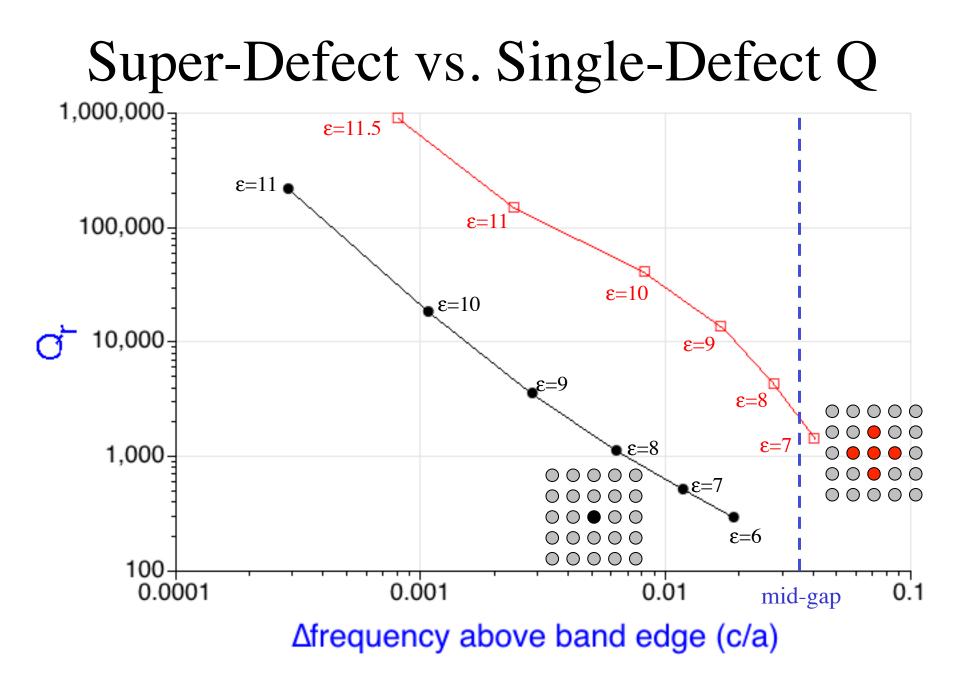
[S.G. Johnson et al., Computing in Sci. and Eng. 3, 38 (2001).]

Super-defects



Weaker defect with more unit cells.

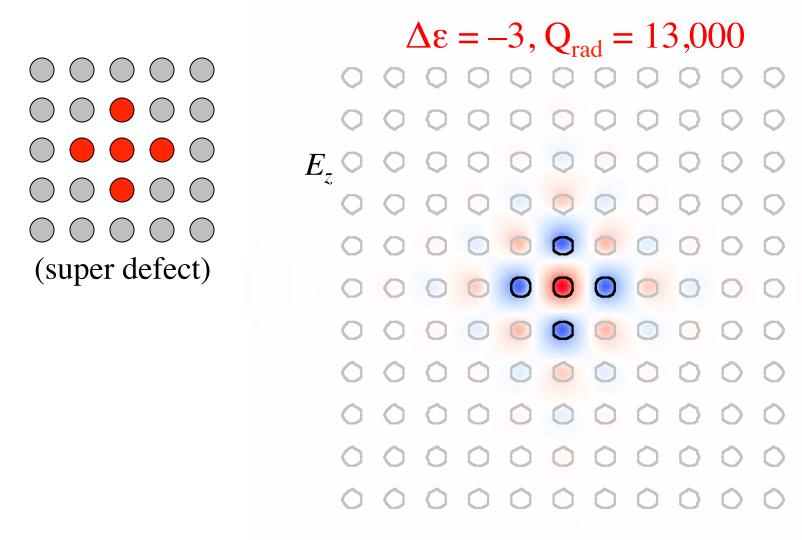
More delocalized at the same point in the gap (*i.e.* at same bulk decay rate)



[S.G. Johnson et al., Computing in Sci. and Eng. 3, 38 (2001).]

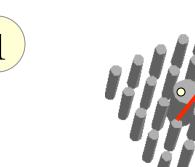
Super-Defect State

(cross-section)



still ~localized: *In-plane* Q_{\parallel} is > 50,000 for only 4 bulk periods

How do we compute Q? (via 3d FDTD [finite-difference time-domain] simulation)



excite cavity with dipole source (broad bandwidth, *e.g.* Gaussian pulse)

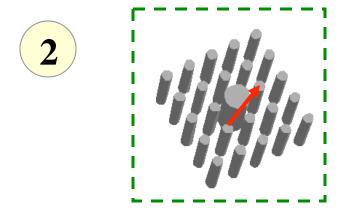
... monitor field at some point °

...extract frequencies, decay rates via fancy signal processing (not just FFT/fit)

[V.A. Mandelshtam, J. Chem. Phys. 107, 6756 (1997)]

Pro: no *a priori* knowledge, get all ω 's and Q's at once Con: no separate Q_w/Q_r , mixed-up field pattern if multiple resonances

How do we compute Q? (via 3d FDTD [finite-difference time-domain] simulation)



excite cavity with narrow-band dipole source (*e.g.* temporally broad Gaussian pulse)

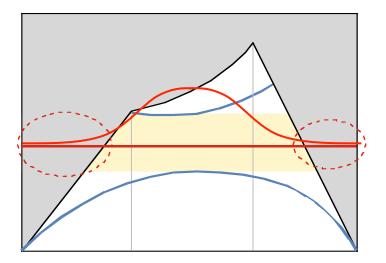
— source is at ω_0 resonance, which must already be known (via (

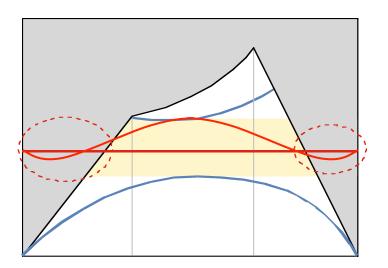
ia 1

...measure outgoing power P and energy U $Q = \omega_0 U / P$

Pro: separate Q_w/Q_r , also get field pattern when multimode Con: requires separate run 1 to get ω_0 , long-time source for closely-spaced resonances Can we increase Q without delocalizing (much)?

Cancellations?





Maybe we can make the Fourier transform oscillate through zero at some important *k* in the light cone?

But what *k*'s are "important?"

Equivalently, some kind of destructive interference in the radiated field?

Need a more compact representation

Cannot cancel infinitely many $\mathbf{E}(x)$ integrals

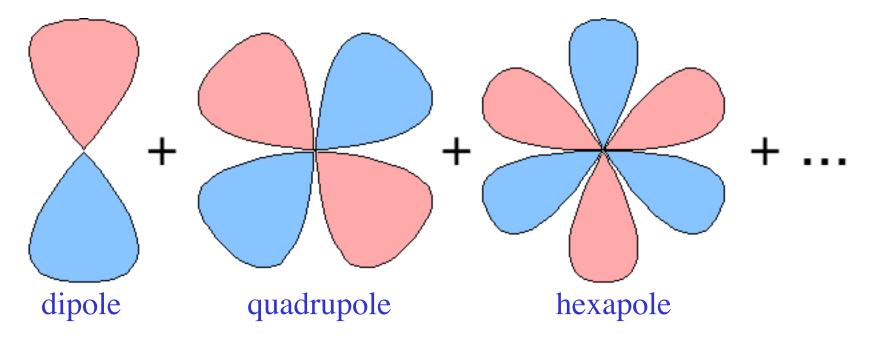
Radiation pattern from localized source...

use multipole expansion
 & cancel largest moment

Multipole Expansion

[Jackson, Classical Electrodynamics]

radiated field =

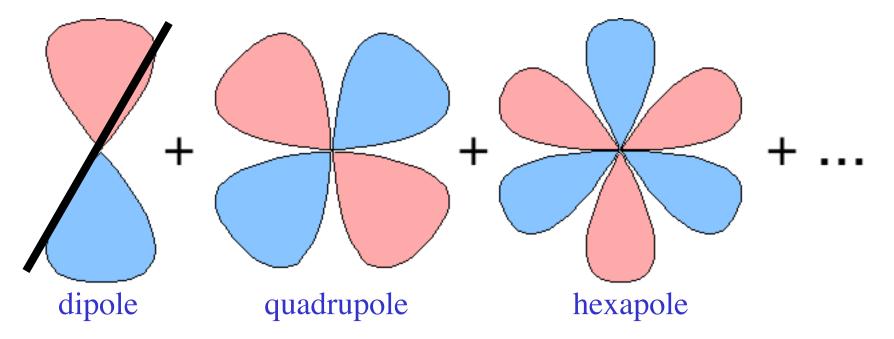


Each term's strength = single integral over near field ...one term is cancellable by tuning one defect parameter

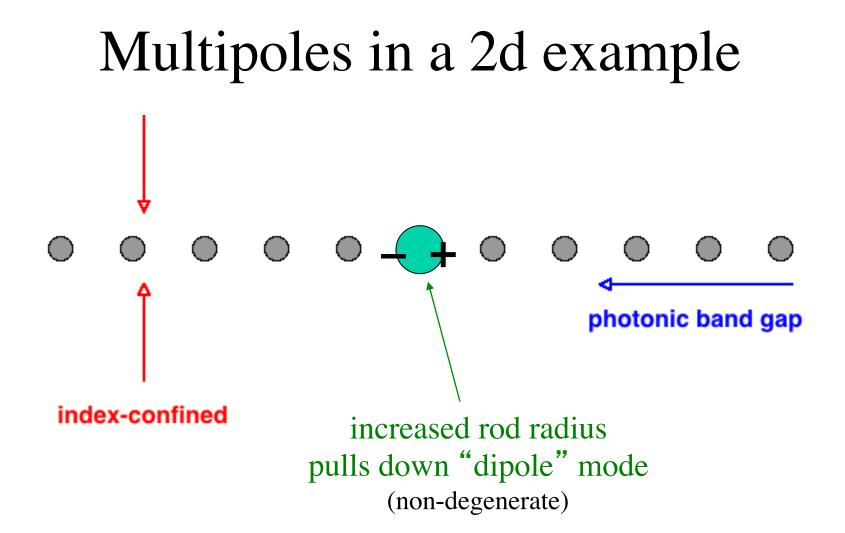
Multipole Expansion

[Jackson, Classical Electrodynamics]

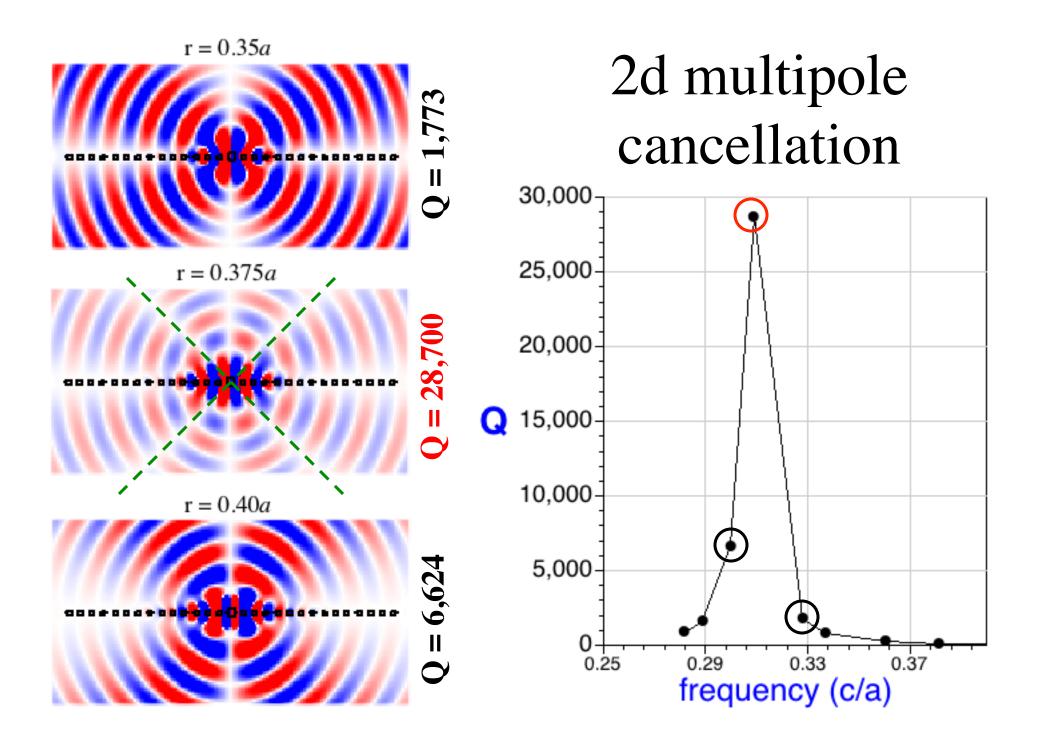
radiated field =



peak Q (cancellation) = transition to higher-order radiation

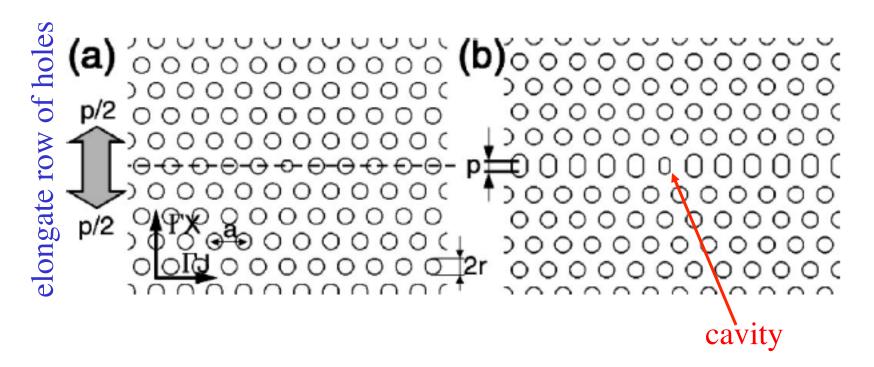


as we change the radius, ω sweeps across the gap



An Experimental (Laser) Cavity

[M. Loncar et al., Appl. Phys. Lett. 81, 2680 (2002)]



Elongation *p* is a tuning parameter for the cavity...

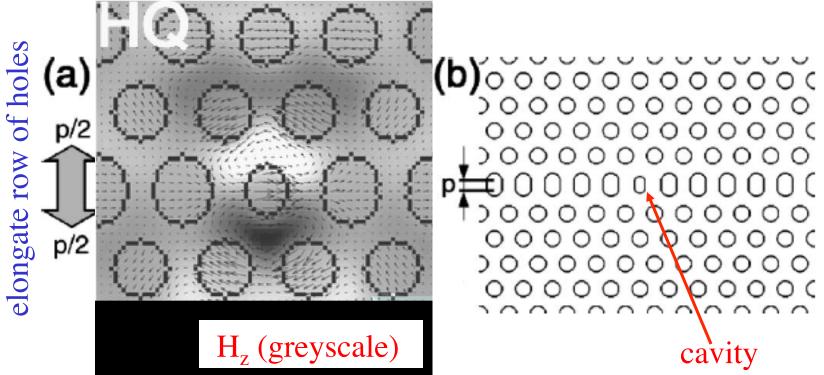
... in simulations, Q peaks sharply to ~10000 for p = 0.1a

(likely to be a multipole-cancellation effect)

* actually, there are two cavity modes; p breaks degeneracy

An Experimental (Laser) Cavity

[M. Loncar et al., Appl. Phys. Lett. 81, 2680 (2002)]

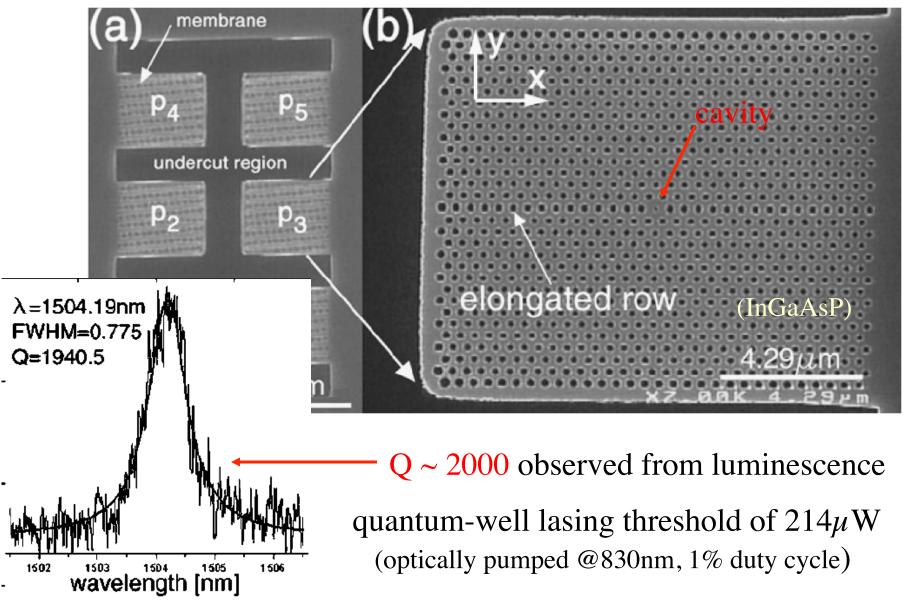


Elongation *p* is a tuning parameter for the cavity... ...in simulations, Q peaks sharply to ~10000 for p = 0.1a(likely to be a multipole-cancellation effect)

* actually, there are two cavity modes; p breaks degeneracy

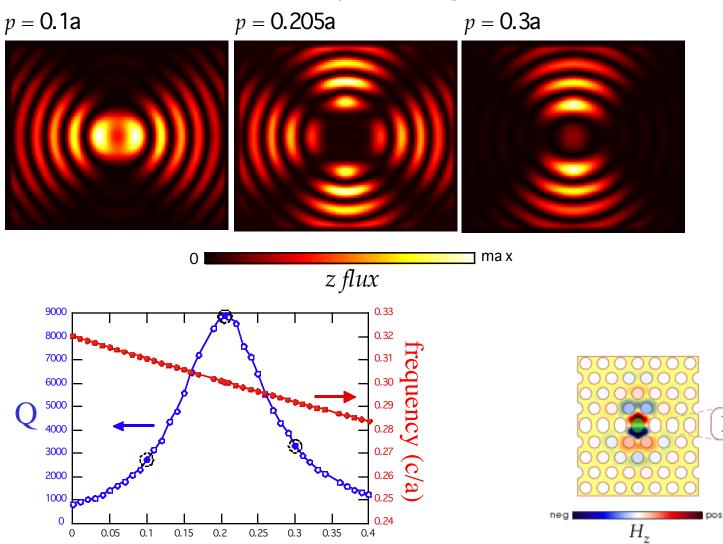
An Experimental (Laser) Cavity

[M. Loncar et al., Appl. Phys. Lett. 81, 2680 (2002)]



Multipole Cancellation in Stretched Cavity

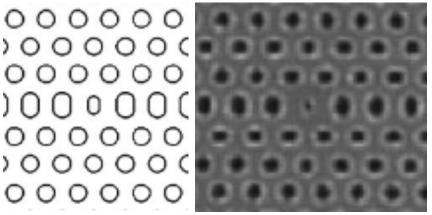
[calculations courtesy A. Rodriguez, 2006]



stretch p/a

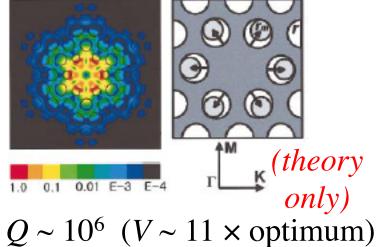
Slab Cavities in Practice: Q vs. V

[Loncar, APL 81, 2680 (2002)]

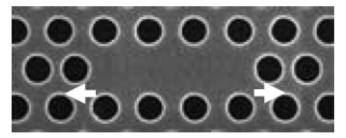


 $Q \sim 10,000 \quad (V \sim 4 \times \text{optimum})$ = $(\lambda/2n)^3$

[Ryu, Opt. Lett. 28, 2390 (2003)]



[Akahane, Nature 425, 944 (2003)]

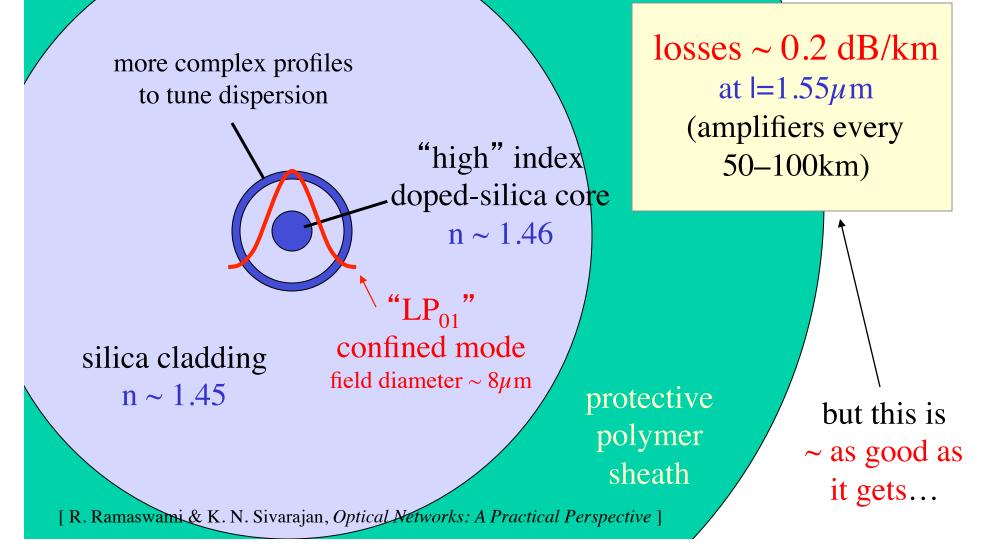


410 nm 420 nm 410 nm [Song, Nature Mat. 4,207 (2005)] 00 OO()00 000 \mathbf{O} 00000000000000000 $Q \sim 600,000 \ (V \sim 10 \times \text{optimum})$

Outline

- Preliminaries: waves in periodic media
- Photonic crystals in theory and practice
- Bulk crystal properties
- Intentional defects and devices
- Index-guiding and incomplete gaps
- Photonic-crystal fibers
- Perturbations, tuning, and disorder

(not to scale)



The Glass Ceiling: Limits of Silica

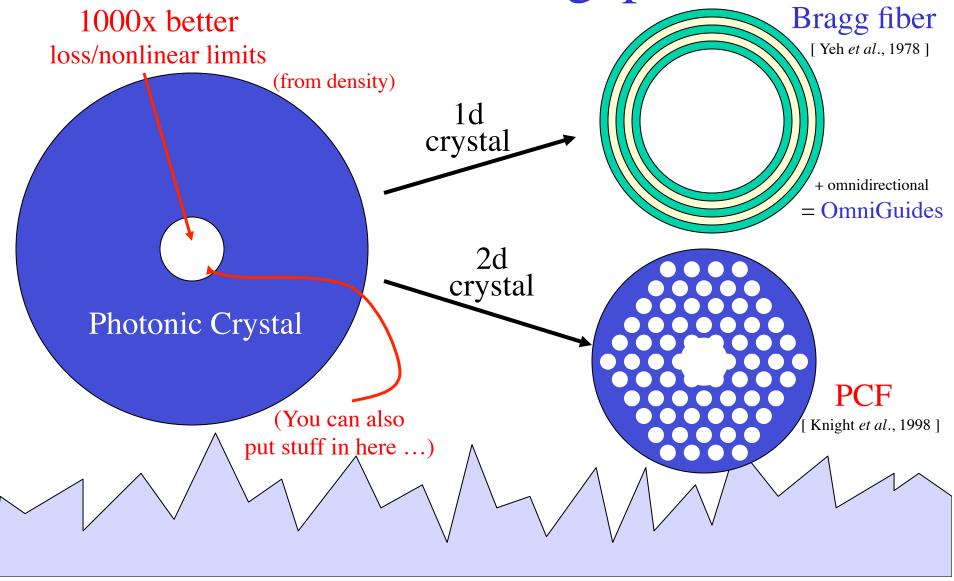
Loss: amplifiers every 50–100km

...limited by Rayleigh scattering (molecular entropy) ...cannot use "exotic" wavelengths like 10.6μ m

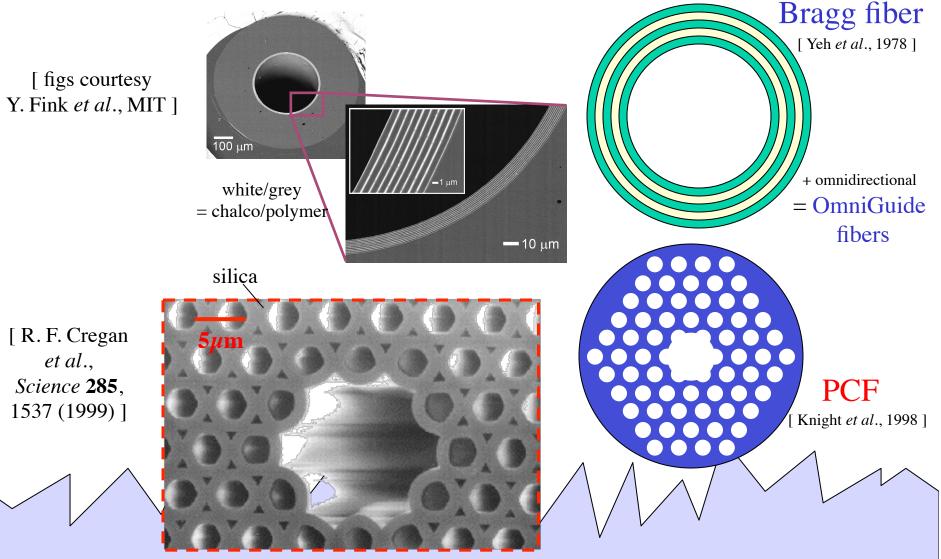
Nonlinearities: after ~100km, cause dispersion, crosstalk, power limits (limited by mode area ~ single-mode, bending loss) also cannot be made (very) **large** for compact nonlinear devices

Radical modifications to dispersion, polarization effects? ...tunability is limited by low index contrast

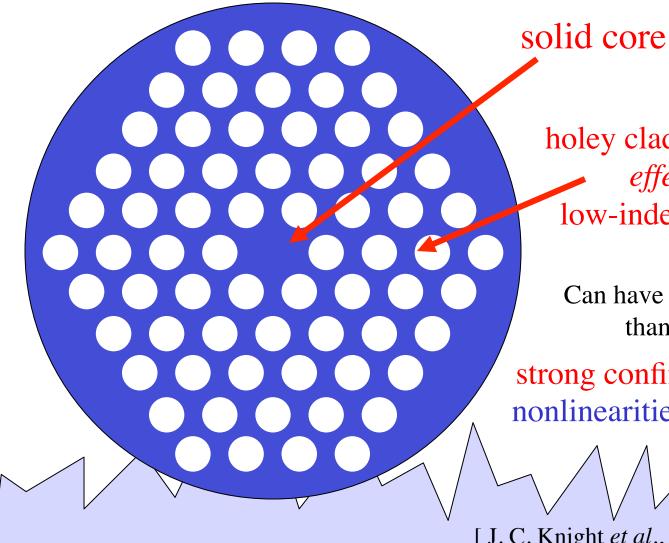
Breaking the Glass Ceiling: Hollow-core Bandgap Fibers



Breaking the Glass Ceiling: Hollow-core Bandgap Fibers



Breaking the Glass Ceiling II: Solid-core Holey Fibers

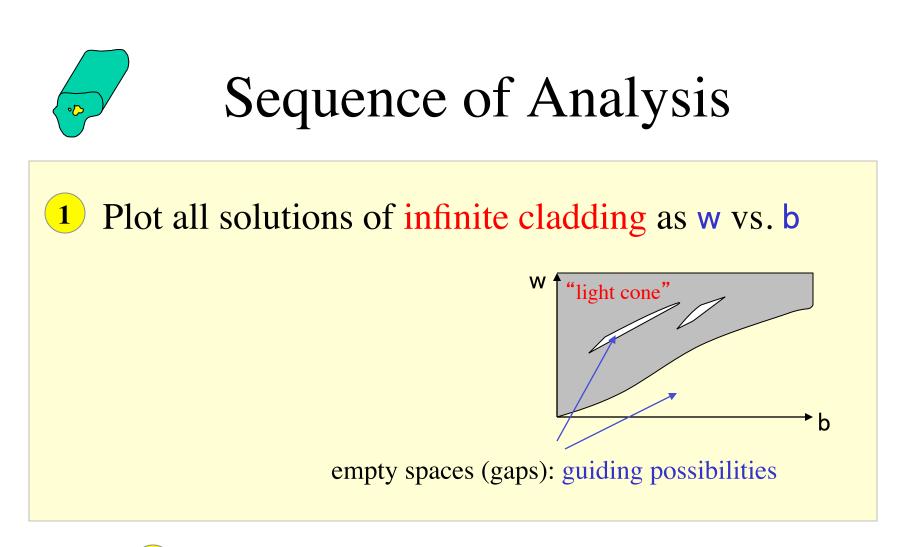


holey cladding forms *effective* low-index material

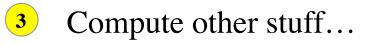
Can have much higher contrast than doped silica...

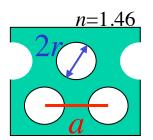
strong confinement = enhanced
nonlinearities, birefringence, ...

[J. C. Knight et al., Opt. Lett. 21, 1547 (1996)]



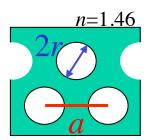
Core introduces new states in empty spaces — plot w(b) dispersion relation

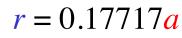


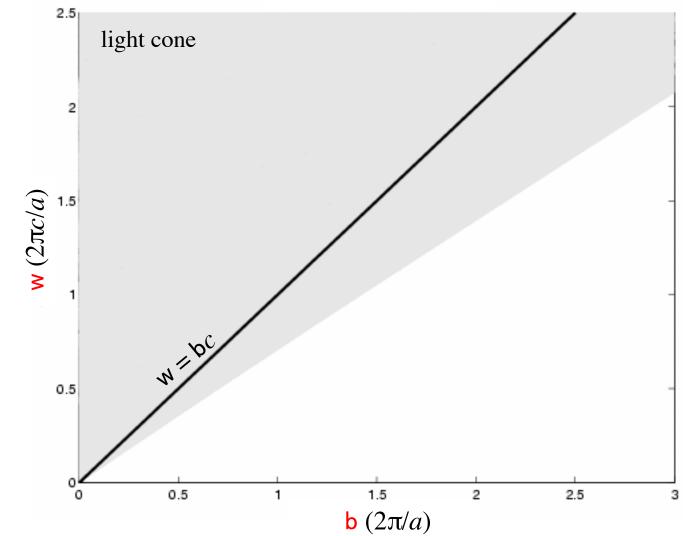


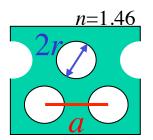
 2.5_{1} light cone 2 w (277*c*/a) 1 w=bc 0.5 0 0.5 1 1.5 2 2.5 0 з **b** $(2\pi/a)$

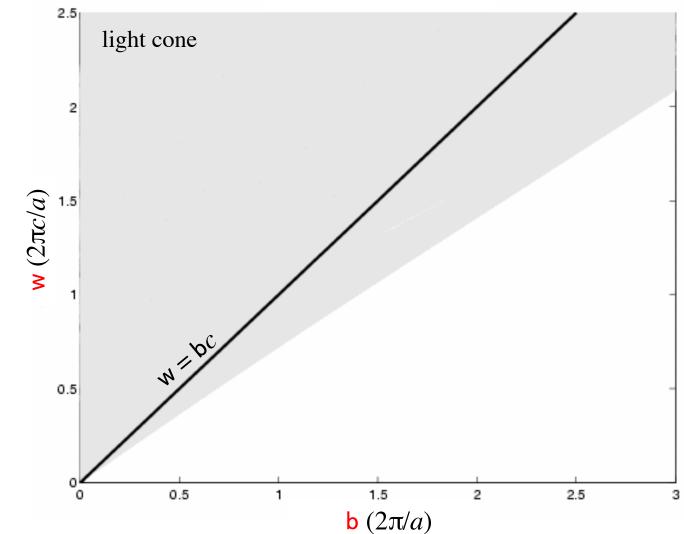
r = 0.1a

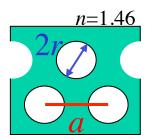


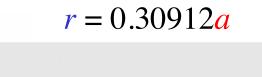




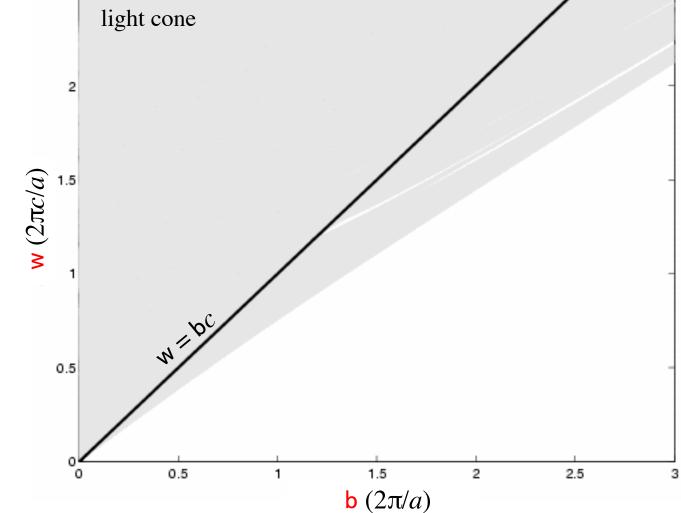


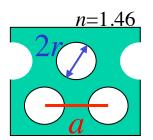




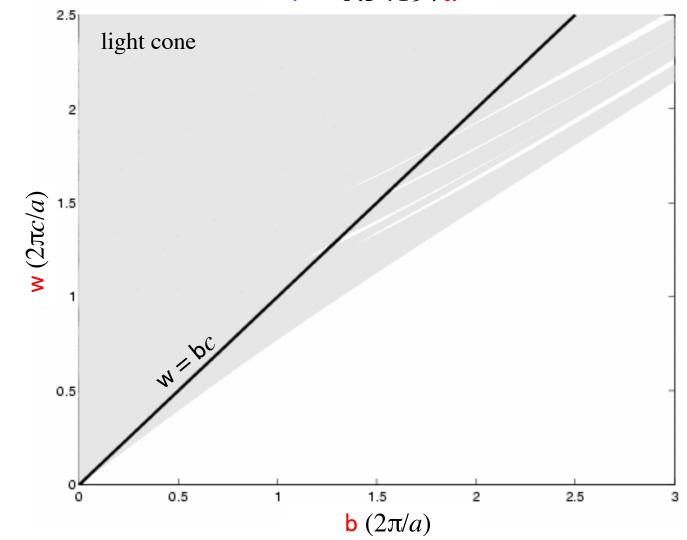


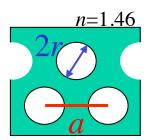
 2.5_{1}

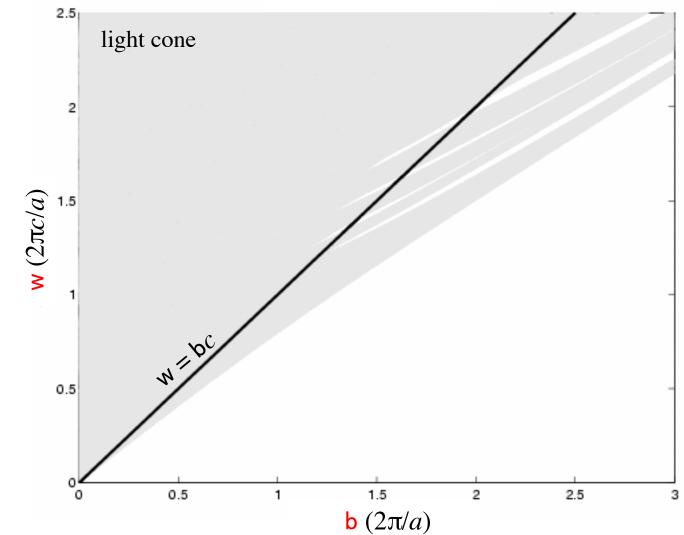


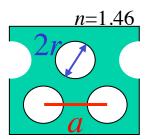


r = 0.34197a



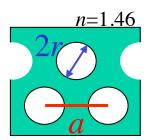


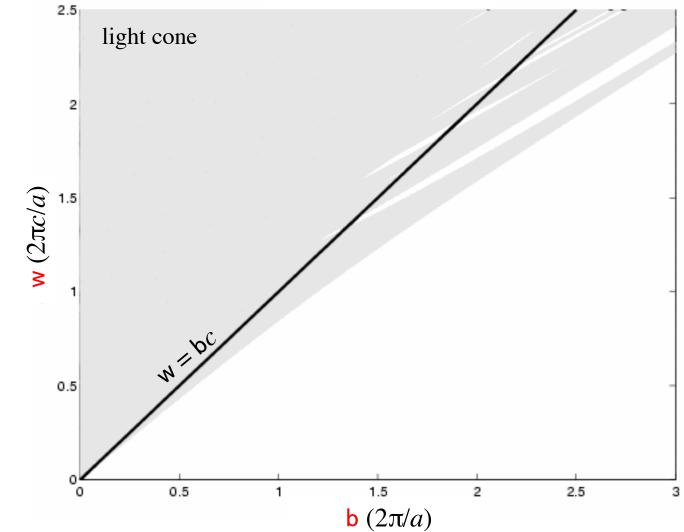


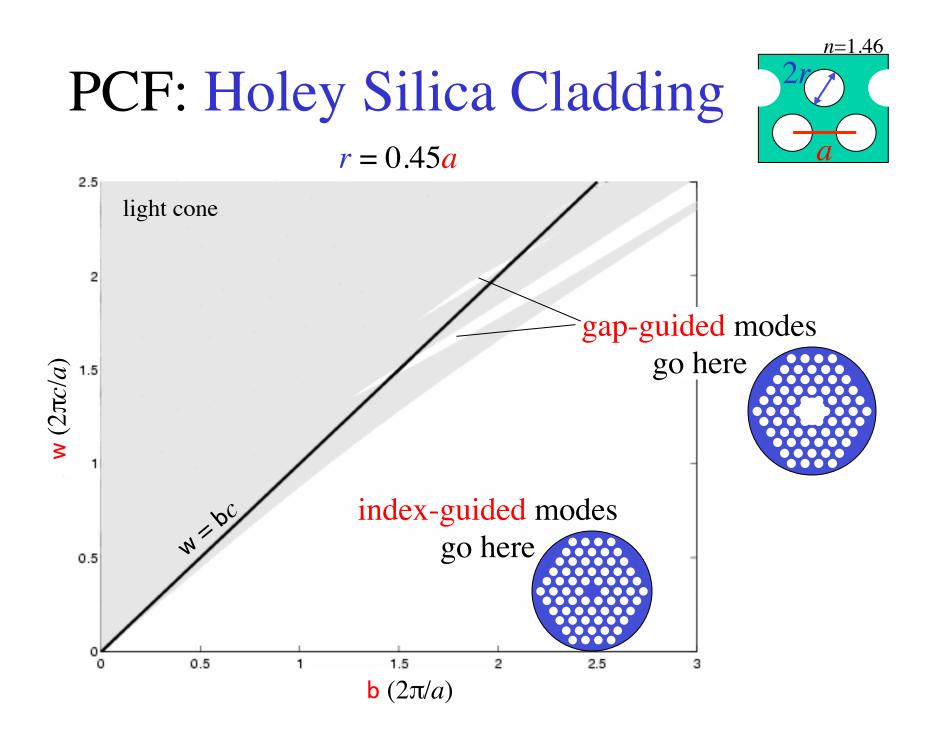


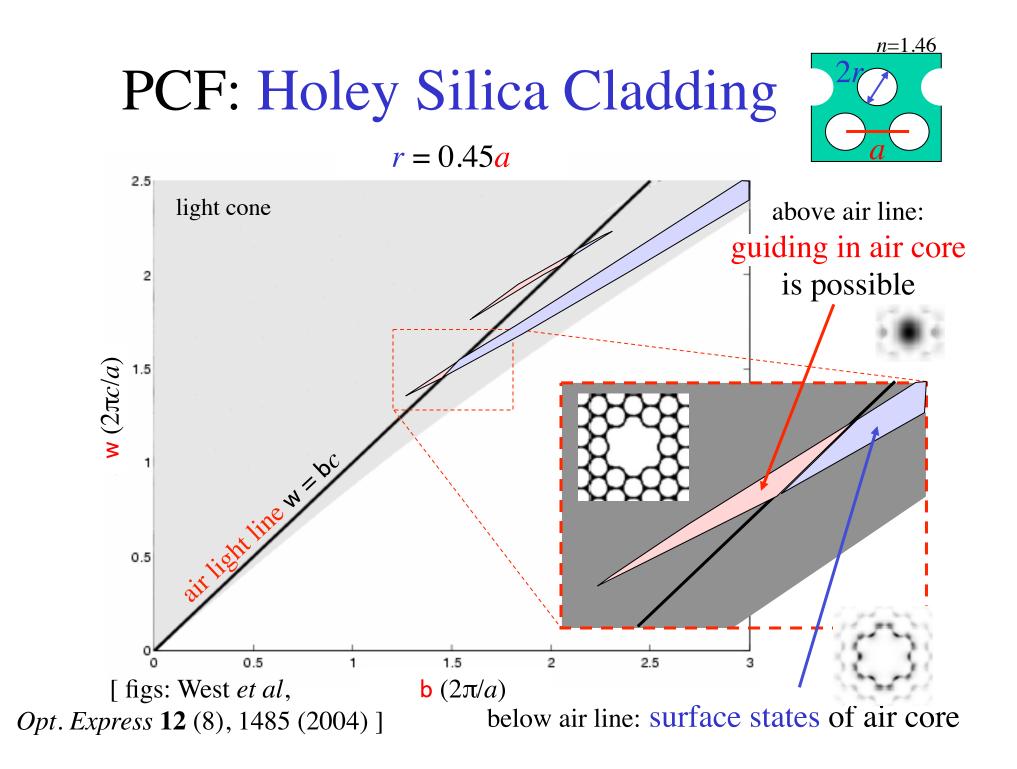
2.5 light cone 2 w (277*c*/a) w=bc 0.5 0 0.5 1 1.5 2 2.5 0 з **b** $(2\pi/a)$

r = 0.4a

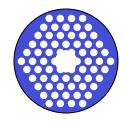


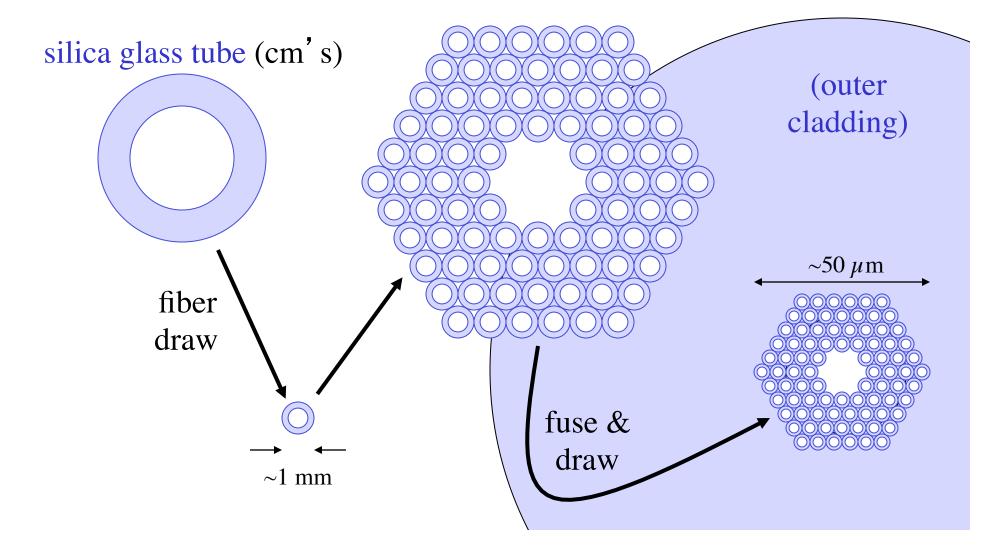






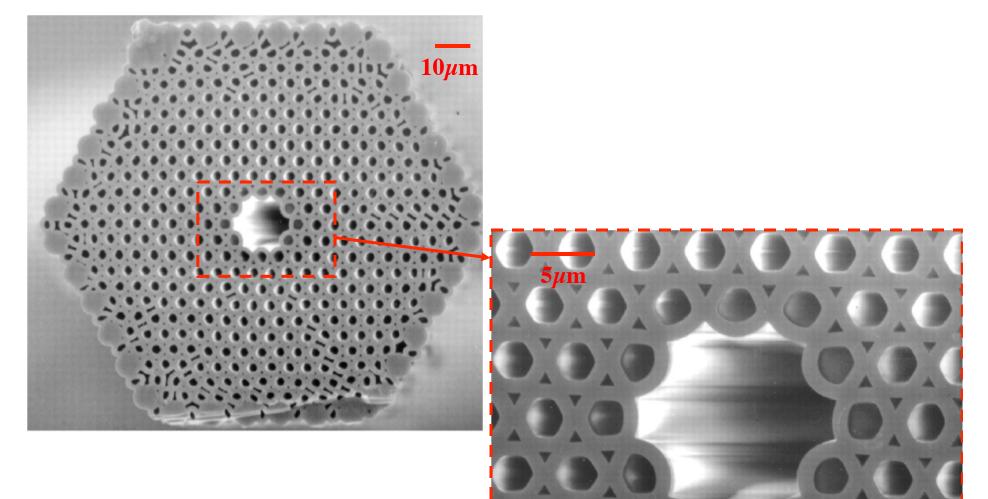
Experimental Air-guiding PCF Fabrication (e.g.)

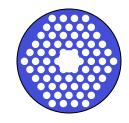




Experimental Air-guiding PCF

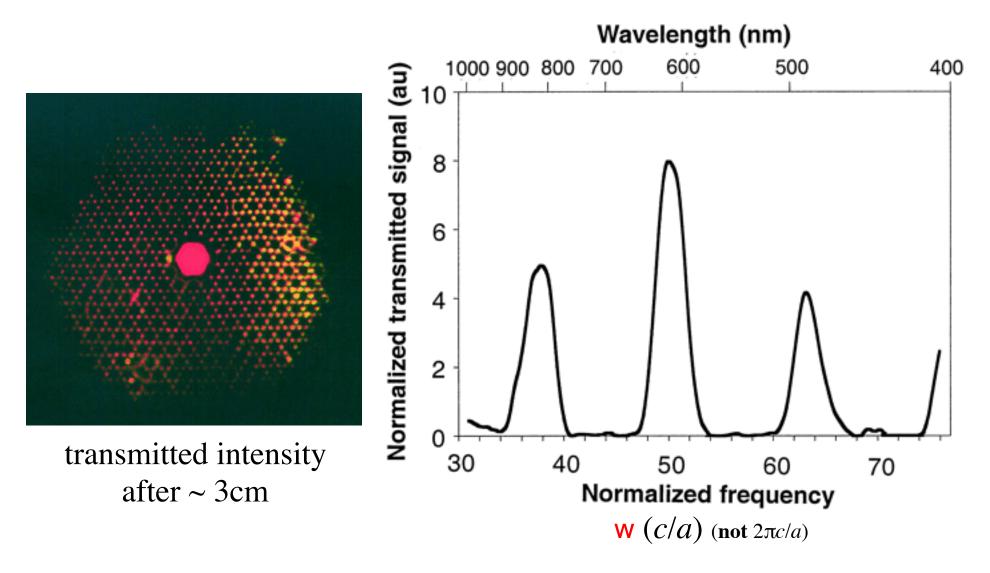
[R. F. Cregan et al., Science 285, 1537 (1999)]



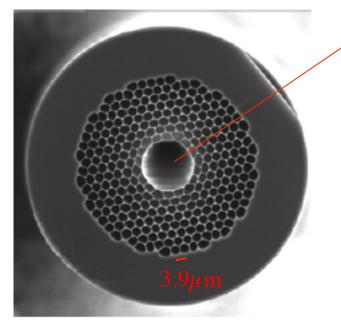


Experimental Air-guiding PCF

[R. F. Cregan et al., Science 285, 1537 (1999)]

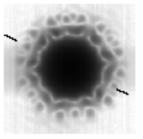


A more recent (lower-loss) example [Mangan, et al., OFC 2004 PDP24]



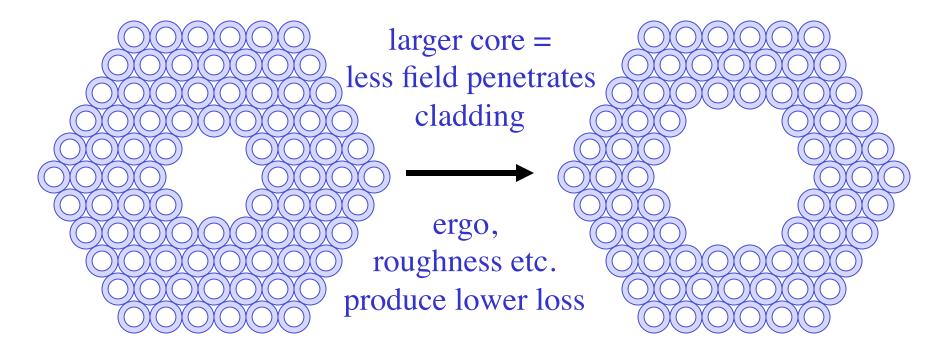
> hollow (air) core (covers 19 holes)

guided field profile: (flux density)



1.7dB/km BlazePhotonics over ~ 800m @1.57µm

Improving air-guiding losses



13dB/km

Corning over ~ 100m @1.5µm [Smith, *et al.*, *Nature* **424**, 657 (2003)]

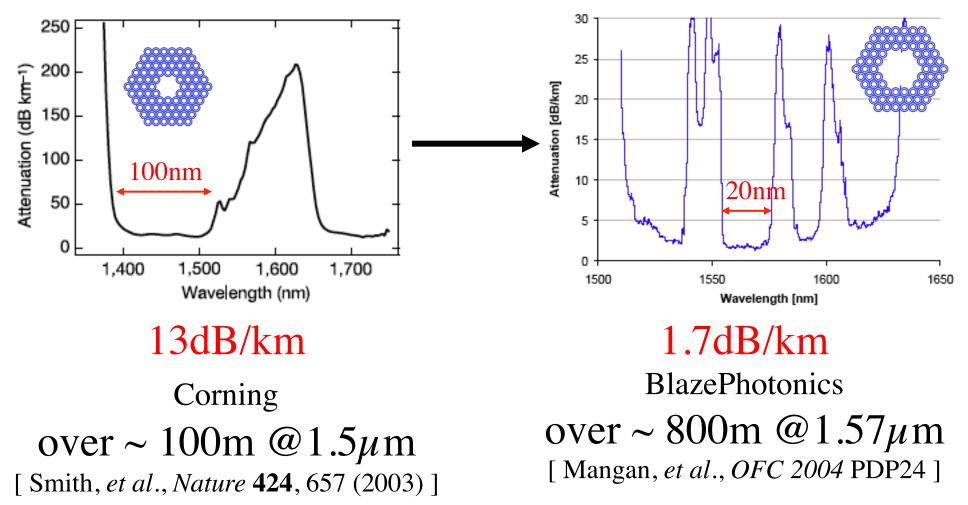
1.7dB/km

BlazePhotonics over ~ 800m @1.57µm [Mangan, *et al.*, *OFC 2004* PDP24]

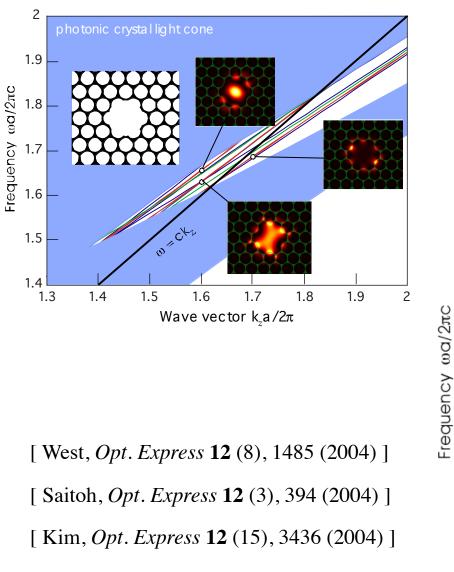
State-of-the-art air-guiding losses

larger core = more surface states crossing guided mode

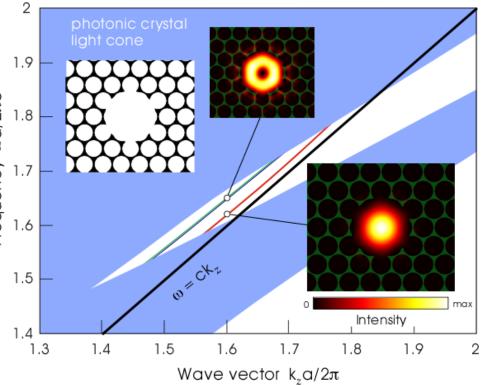
... but surface states can be removed by proper crystal termination [West, Opt. Express 12 (8), 1485 (2004)]



Surface States vs. Termination



changing the crystal termination can eliminate surface states



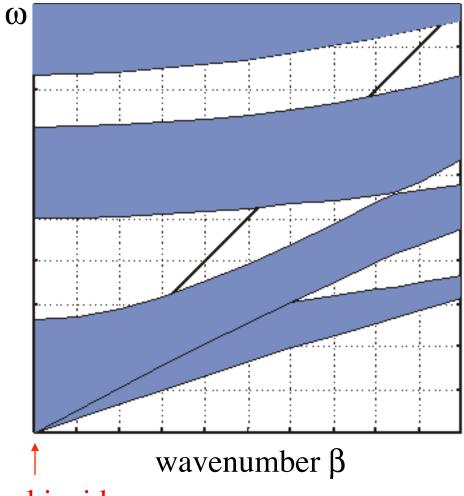
Bragg Fiber Cladding

at large radius, becomes ~ planar

 β_{\odot} radial k_r (Bloch wavevector)

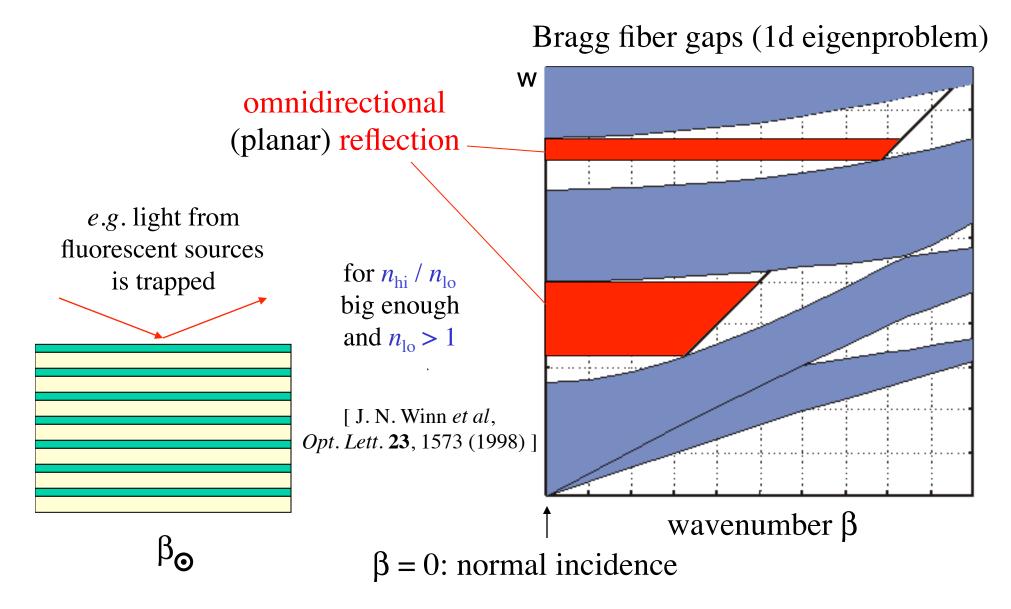
0 by conservation of angular momentum B =

Bragg fiber gaps (1d eigenproblem)



 $\beta = 0$: normal incidence

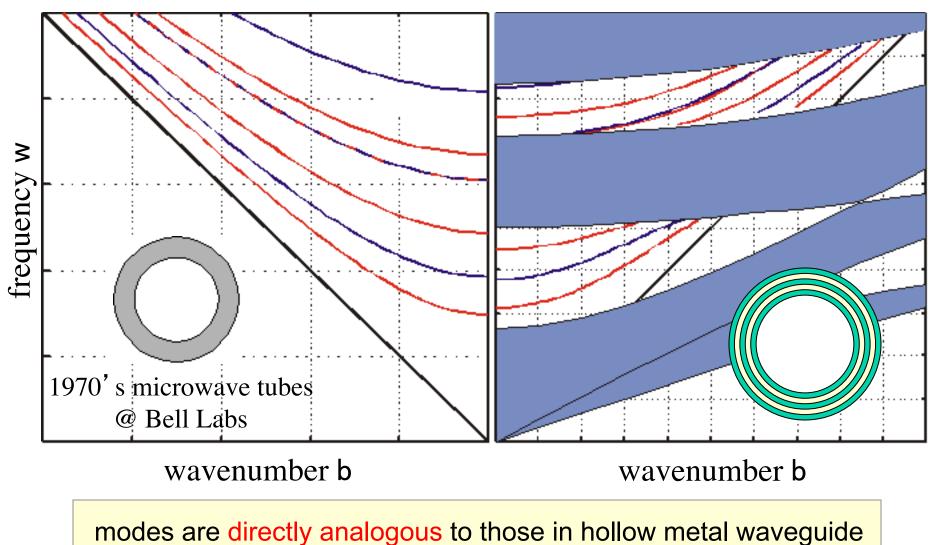
Omnidirectional Cladding



Hollow Metal Waveguides, Reborn

metal waveguide modes

OmniGuide fiber modes



 \boldsymbol{E}

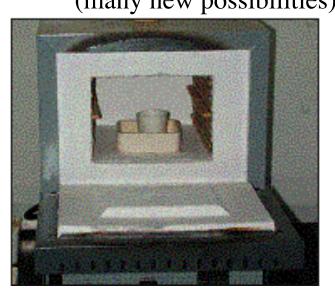
lowest-loss mode, just as in metal

(near) node at interface
= strong confinement ►
= low losses

non-degenerate mode — cannot be split = no birefringence or PMD

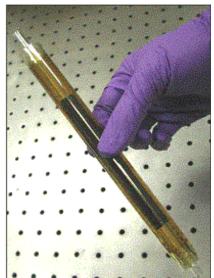
Yes, but how do you make it? [figs courtesy Y. Fink *et al.*, MIT]

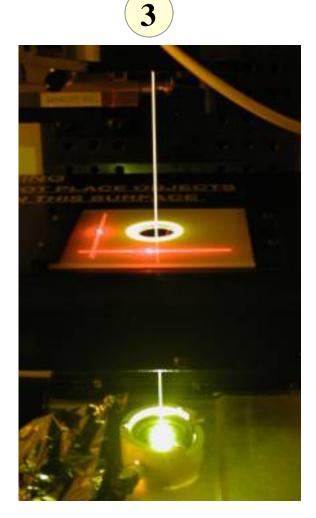
find compatible materials (many new possibilities)



chalcogenide glass, n ~ 2.8 + polymer (or oxide), n ~ 1.5

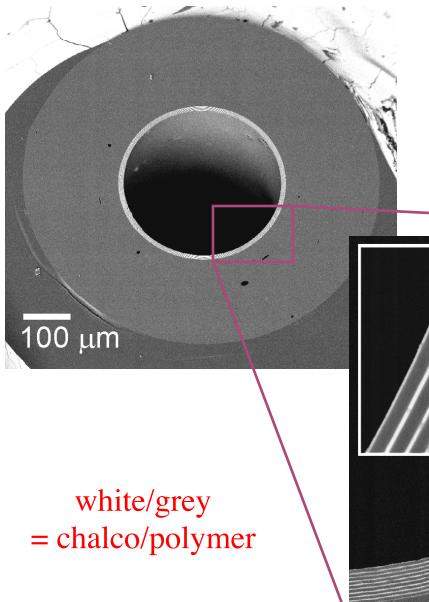
2 Make pre-form ("scale model")





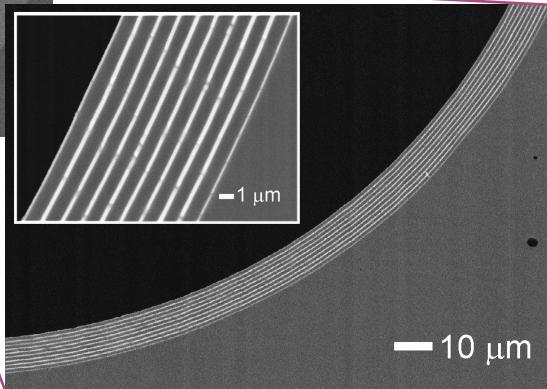
fiber drawing

A Drawn Bandgap Fiber



[figs courtesy Y. Fink et al., MIT]

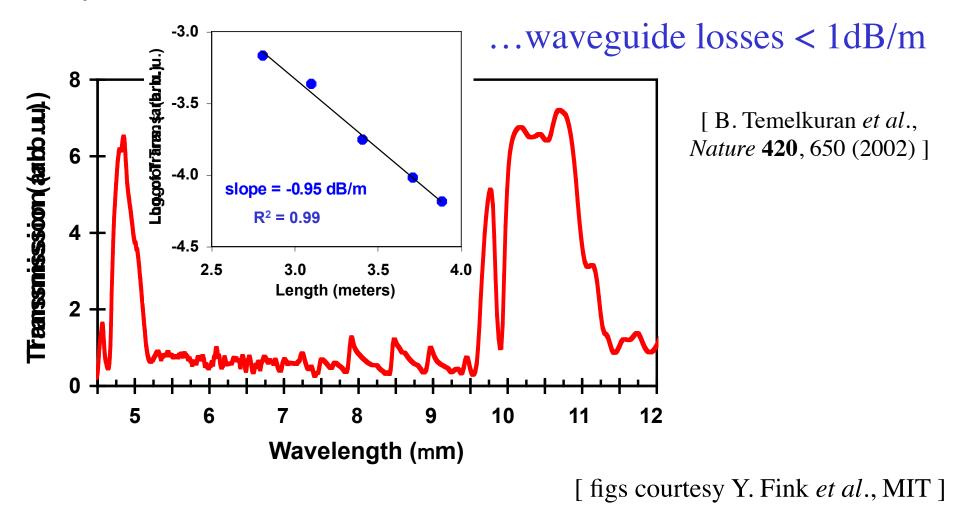
 Photonic crystal structural uniformity, adhesion, physical durability through large temperature excursions



High-Power Transmission

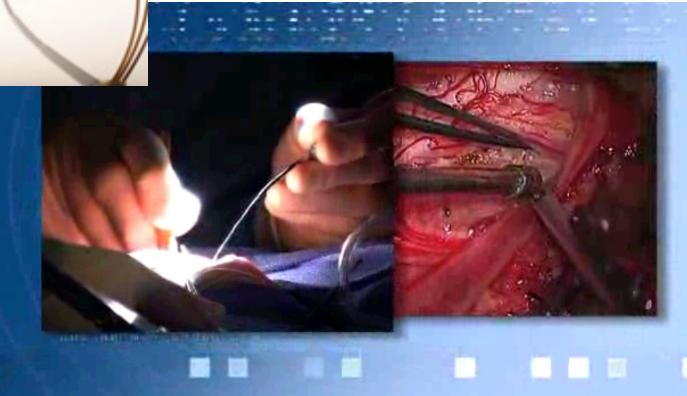
at 10.6µm (no previous dielectric waveguide)

Polymer losses @ $10.6\mu m \sim 50,000 dB/m...$



Application: Laser Surgery

[www.omni-guide.com]

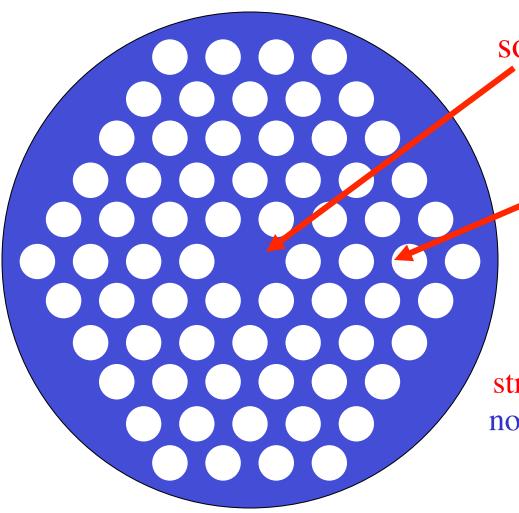


An early endoscopic surgery

"Examination today reveals dramatic improvement in both the tracheal and laryngeal papillomas. ... has fewer papillomas than at any time in the past decade! "

Dr. J. Koufman, Dec 17, 2004 Director CVSD

Index-Guiding PCF & microstructured fiber: Holey Fibers



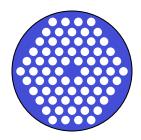
solid core

holey cladding forms *effective* low-index material

Can have much higher contrast than doped silica...

strong confinement = enhanced
nonlinearities, birefringence, ...

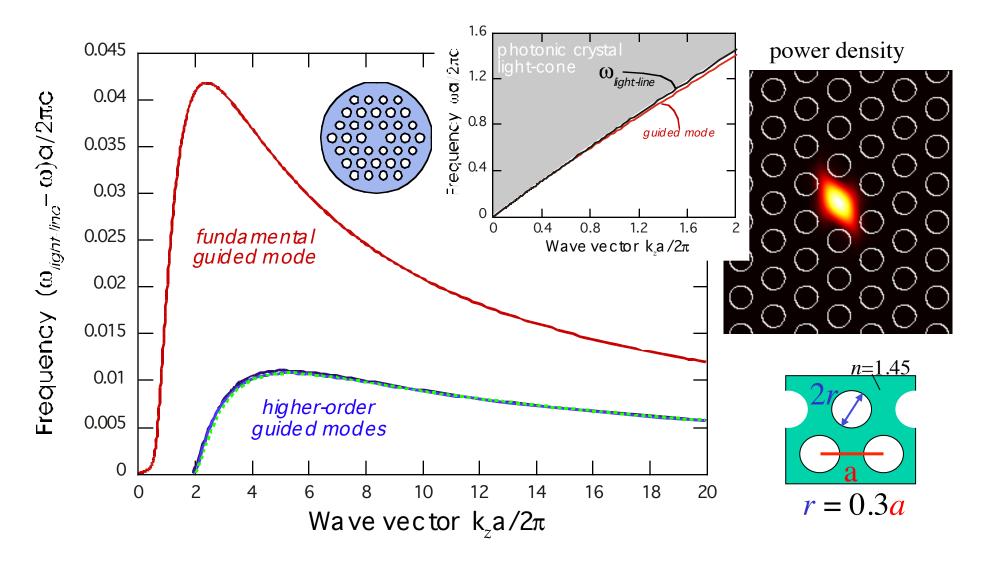
[J. C. Knight et al., Opt. Lett. 21, 1547 (1996)]

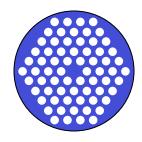


Guided Mode in a Solid Core

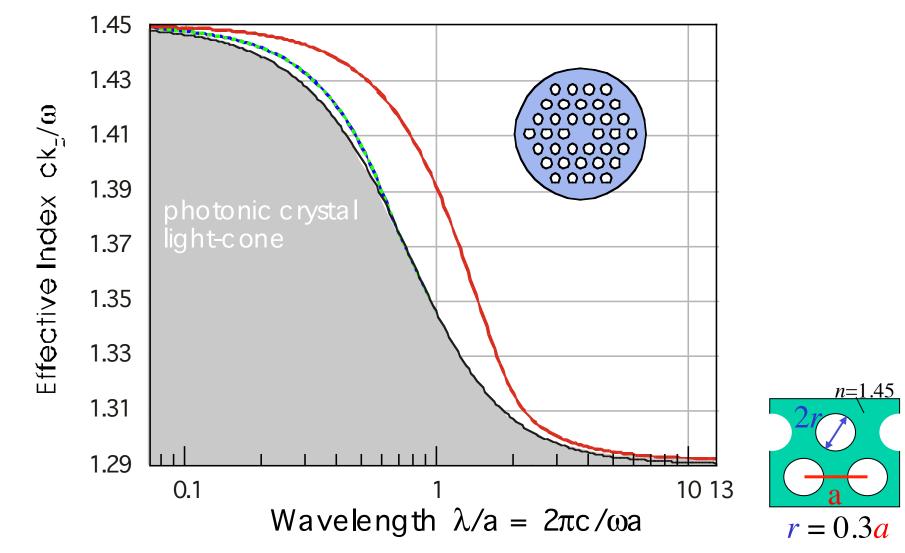
small computation: only lowest-w band!

(~ one minute, planewave)

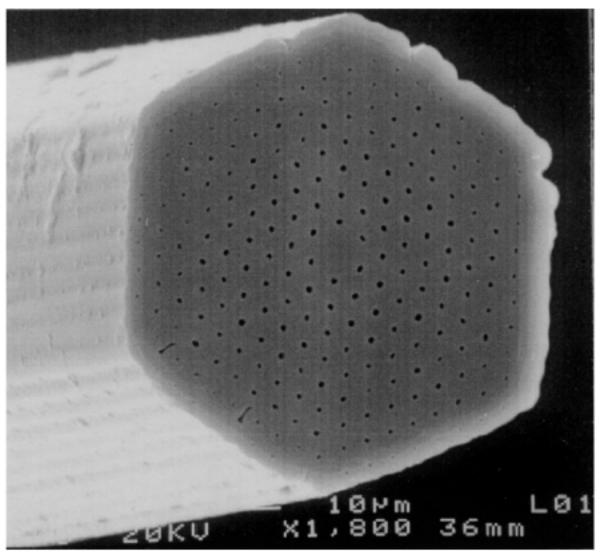




λ -dependent "index contrast"



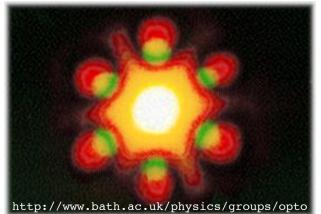
Endlessly Single-Mode [T. A. Birks *et al.*, *Opt. Lett.* 22, 961 (1997)]



at higher w (smaller I), the light is more concentrated in silica

...so the effective index contrast is less

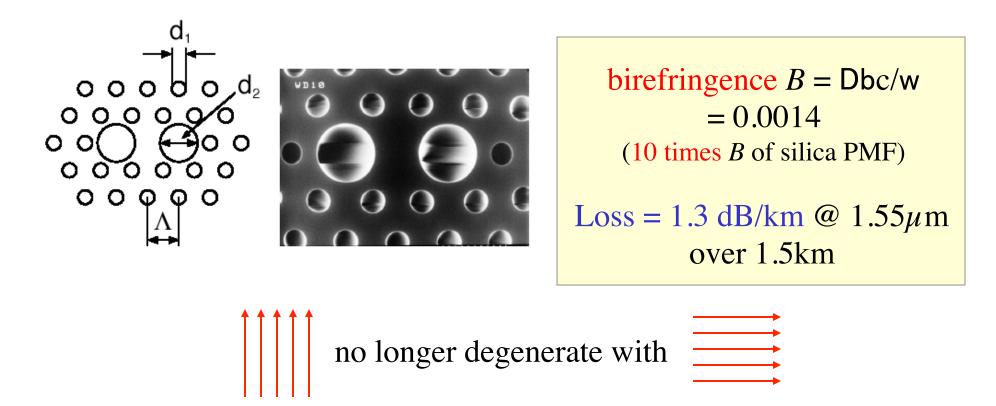
...and the fiber can stay single mode for all !!



Holey Fiber PMF

(Polarization-Maintaining Fiber)

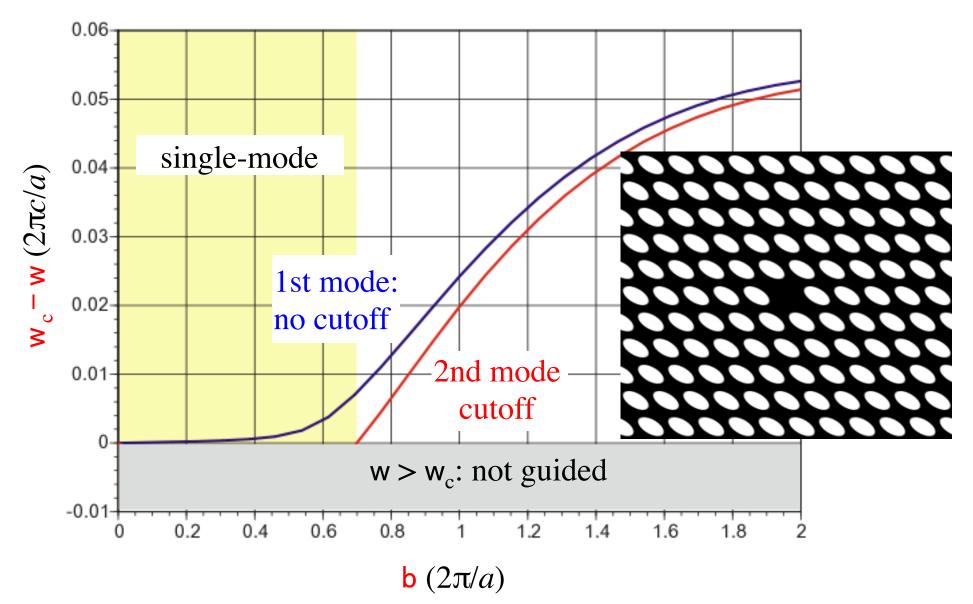




Can operate in a single polarization, PMD = 0 (also, known polarization at output)

[K. Suzuki, Opt. Express 9, 676 (2001)]

Truly Single-Mode Cutoff-Free Fiber

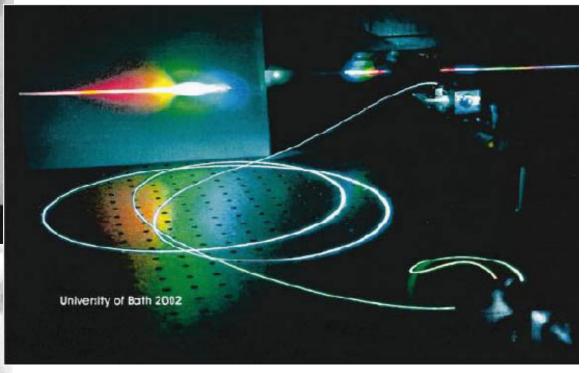


Nonlinear Holey Fibers:

Supercontinuum Generation

(enhanced by strong confinement + unusual dispersion)

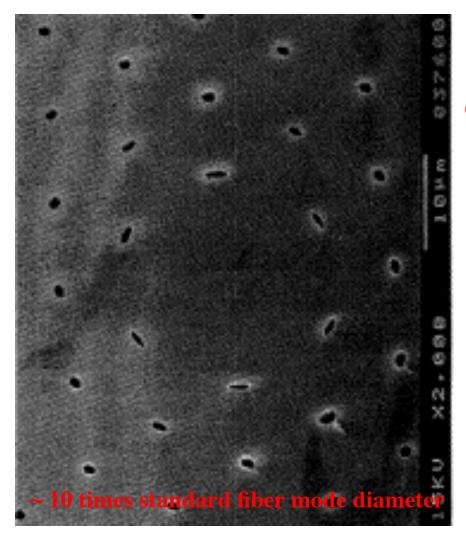
e.g. 400–1600nm "white" light: from 850nm ~200 fs pulses (4 nJ)



[figs: W. J. Wadsworth *et al.*, *J. Opt. Soc. Am. B* **19**, 2148 (2002)] [earlier work: J. K. Ranka *et al.*, *Opt. Lett.* **25**, 25 (2000)]

Low Contrast Holey Fibers

[J. C. Knight et al., Elec. Lett. 34, 1347 (1998)]



The holes can also form an effective low-contrast medium

i.e. light is only affected slightly by small, widely-spaced holes

This yields large-area, single-mode fibers (low nonlinearities)

...but bending loss is worse

Outline

- Preliminaries: waves in periodic media
- Photonic crystals in theory and practice
- Bulk crystal properties
- Intentional defects and devices
- Index-guiding and incomplete gaps
- Photonic-crystal fibers
- Perturbations, tuning, and disorder

All Imperfections are Small (or the device wouldn't work)

- Material absorption: small imaginary De
- Nonlinearity: small $De \sim |E|^2$ (Kerr)
- Stress (MEMS): small De or small e boundary shift
- Tuning by thermal, electro-optic, etc.: small De
- Roughness: small De or boundary shift

Weak effects, long distance/time: hard to compute directly — use semi-analytical methods Semi-analytical methods for small perturbations

- Brute force methods (FDTD, *etc*.): expensive and give limited insight
- Semi-analytical methods

 numerical solutions for perfect system
 analytically bootstrap to imperfections

... coupling-of-modes, perturbation theory, Green's functions, coupled-wave theory, ...

Perturbation Theory

for Hermitian eigenproblems

given eigenvectors/values: $\hat{O}|u\rangle = u|u\rangle$...find change $\Delta u \& \Delta |u\rangle$ for small $\Delta \hat{O}$

Solution:

expand as power series in $\Delta \hat{O}$

$$\Delta u = 0 + \Delta u^{(1)} + \Delta u^{(2)} + \dots$$
$$\& \Delta |u\rangle = 0 + \Delta |u\rangle^{(1)} + \dots$$
$$\& \Delta |u\rangle = 0 + \Delta |u\rangle^{(1)} + \dots$$
(first order is usually enough)

Perturbation Theory

for electromagnetism

$$\Delta \omega^{(1)} = \frac{c^2}{2\omega} \frac{\langle \mathbf{H} | \Delta \hat{A} | \mathbf{H} \rangle}{\langle \mathbf{H} | \mathbf{H} \rangle}$$

= $-\frac{\omega}{2} \frac{\int \Delta \varepsilon |\mathbf{E}|^2}{\int \varepsilon |\mathbf{E}|^2}$...e.g. absorption
gives imaginary Dw
= decay!
or: $\Delta k^{(1)} = \Delta \omega^{(1)} / v_g$
 $v_g = \frac{d\omega}{dk}$

$$\Rightarrow \frac{\Delta \omega^{(1)}}{\omega} = -\frac{\Delta n}{n} \cdot (\text{fraction of } \varepsilon |\mathbf{E}|^2 \text{ in } \Delta n)$$

A Quantitative Example

...but what about the cladding?

Gas can have low loss & nonlinearity

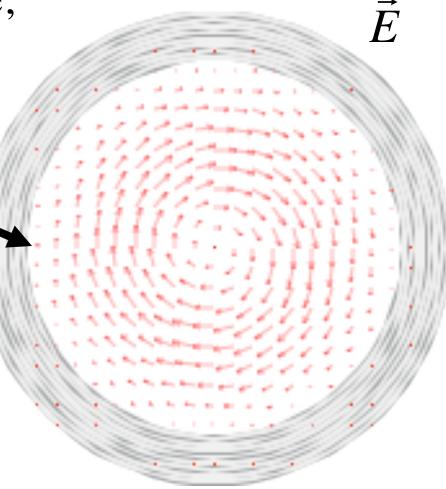
...*some* field penetrates!

& may need to use very "bad" material to get high index contrast

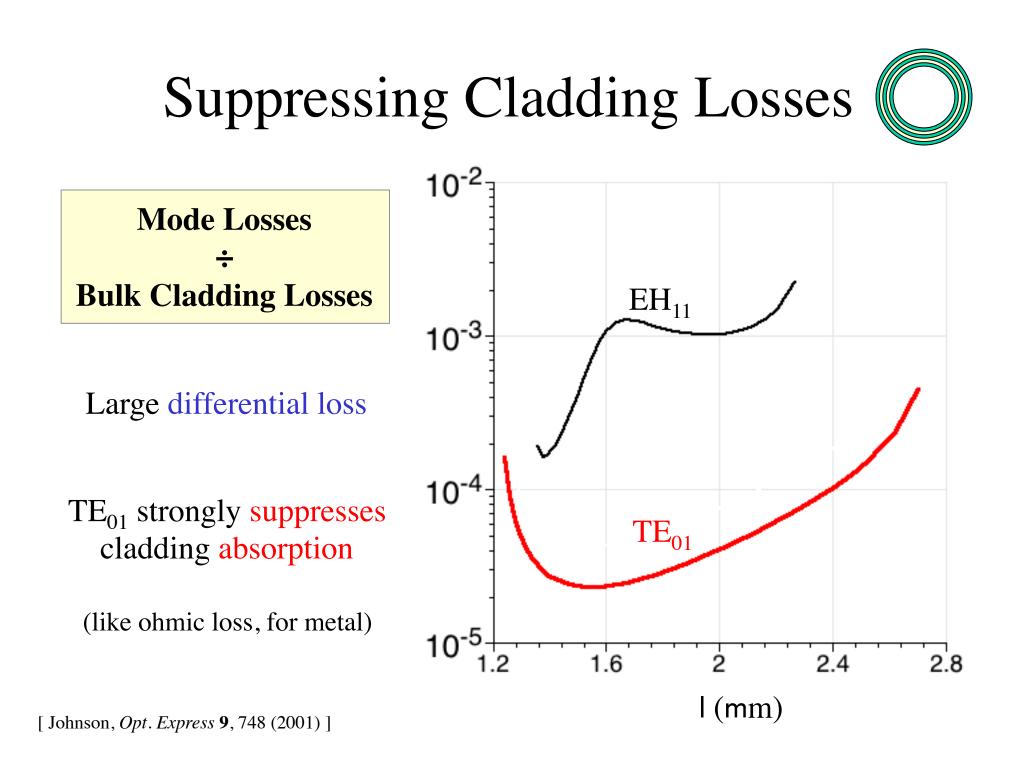
Review: the TE_{01} mode

lowest-loss mode, just as in metal

(near) node at interface
= strong confinement ►
= low losses



[Johnson, Opt. Express 9, 748 (2001)]



Quantifying Nonlinearity

 $Db \sim power P \sim 1 / lengthscale for nonlinear effects$

g = Db / P

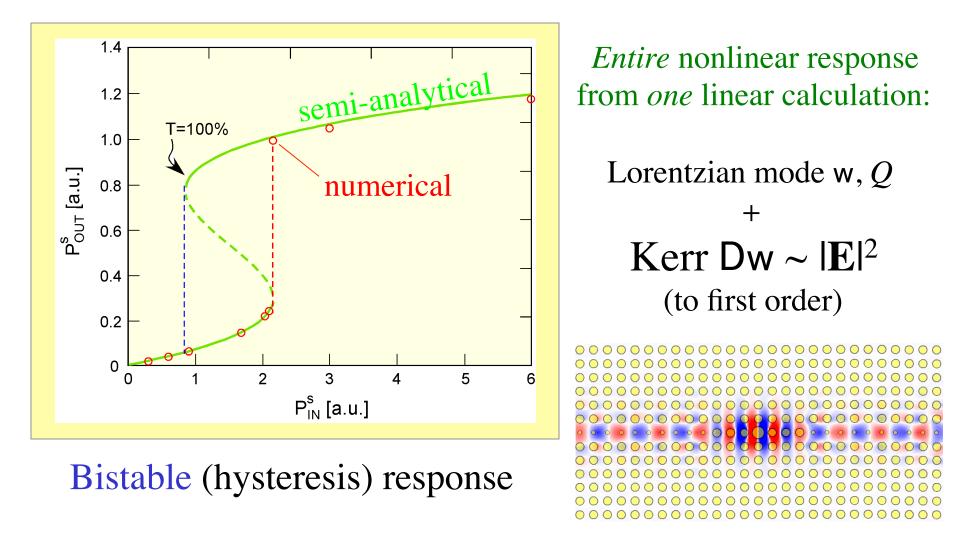
= nonlinear-strength parameter determining self-phase modulation (SPM), four-wave mixing (FWM), ...

> (unlike "effective area," tells *where* the field is, not just how big)

[Johnson, Opt. Express 9, 748 (2001)] [R. Ramaswami & K. N. Sivarajan, Optical Networks: A Practical Perspective]

Suppressing Cladding Nonlinearity [Johnson, Opt. Express 9, 748 (2001)] 10⁻⁶ **Mode Nonlinearity*** ÷ **Cladding Nonlinearity** 10⁻⁷ TE Will be dominated by nonlinearity of air 10⁻⁸ $\sim 10,000$ times weaker than in silica fiber (including factor of 10 in area) -9 10 2.4 1.6 2 2.8 l (mm) "nonlinearity" = $Db^{(1)} / P = g$

A Linear Nonlinear "Transistor"



[Soljacic et al., PRE Rapid. Comm. 66, 055601 (2002).]

Tuning Microcavities

• Correcting for fabrication error:

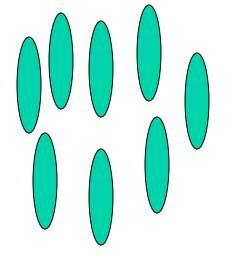
narrow-band filters require 10⁻³ or better accuracy
 fabricate "close enough" and tune post-fabrication
 ... want: large tunability, slow speeds

- Switching/routing:
 - require small tunability (e.g. by bandwidth: 10^{-3})
 - need high speeds (ideally, ns or better)

Many mechanisms to change cavity index or shape: liquid crystal, thermal, nonlinearities, carrier density, MEMS... "easy" theory for Δn tuning: $\frac{\Delta \omega^{(1)}}{\omega} = -\frac{\Delta n}{n} \cdot (\text{fraction of } \varepsilon |\mathbf{E}|^2 \text{ in } \Delta n)$

Liquid-crystal Tuning

One of the earliest proposals: [Busch & John, *PRL* **83**, 967 (1999).]



Asymmetric particles oriented by external field: -n on (two) "ordinary" axes can differ from "extraordinary-axis" n by $\Delta n \sim 15\%$

Response time: 20–200µs [Shimoda, APL 79, 3627 (2001).]

Difficulty: filling entire photonic crystal [all existing work] with liquid $(n \sim 1.5)$ usually destroys the gap

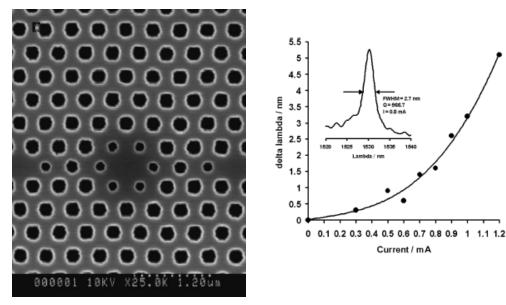
Possible solutions:

- use thin LC coating [Busch, 1999], but small Δ frequency
- use micro-fluidic droplet only in cavity?

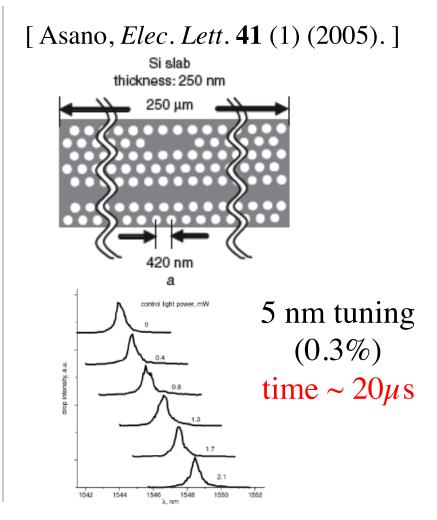
Thermal tuning

using thermal expansion, phase transitions, or most successfully, thermo-optic coefficient (dn/dT)

[Chong, PTL 16, 1528 (2004).]

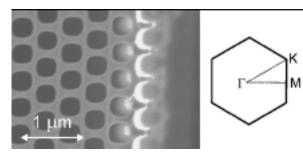


5 nm tuning (0.3%) in Si time (estimated) < 1 ms



Tuning by Free-carrier Injection

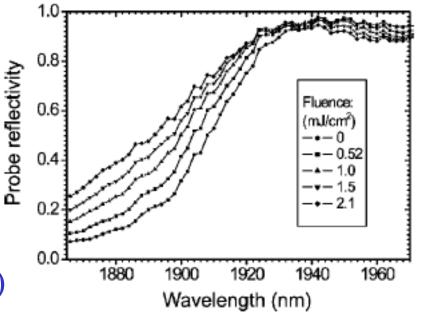
[Leonard, PRB 66, 161102 (2002).]



macroporous Si

optical carrier injection by 300fs pulses at 800nm pump wavelength

31 nm wavelength shift (2%) rise time ~ 500 fs *but affects absorption too* Measured Δ reflectivity from band-edge shift at 1.9 μ m



Tuning by Optical Nonlinearities

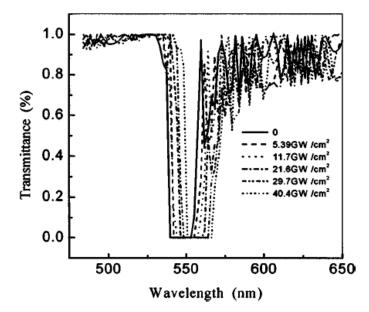
Pockels effect ($\Delta n \sim E$)

[Takeda, *PRE* **69**, 016605 (2004).]

Theory only

Kerr effect ($\Delta n \sim |\mathbf{E}|^2$)

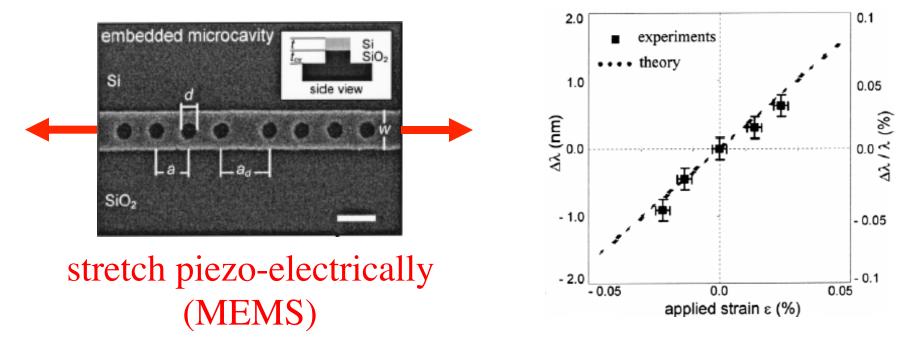
[Hu, APL 83, 2518 (2003).]



fcc lattice of polystyrene spheres (*incomplete gap*) 13nm shift @ 540nm (2.4%) response time ~ 10 ps

Tuning by MEMS deformation

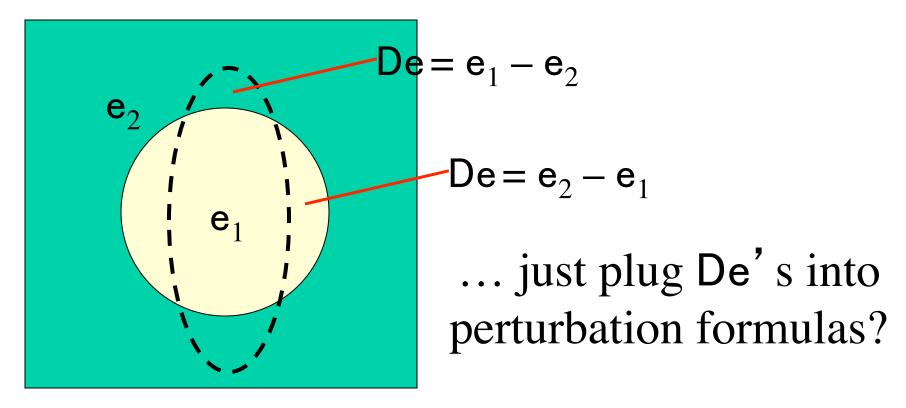
[C.-W. Wong, Appl. Phys. Lett. 84, 1242 (2004).]



1.5 nm shift @ $1.5\mu m (0.1\%)$ response-time not measured, expected in "microseconds" range

Theory tricky: *not* a Δn shift

Boundary-perturbation theory

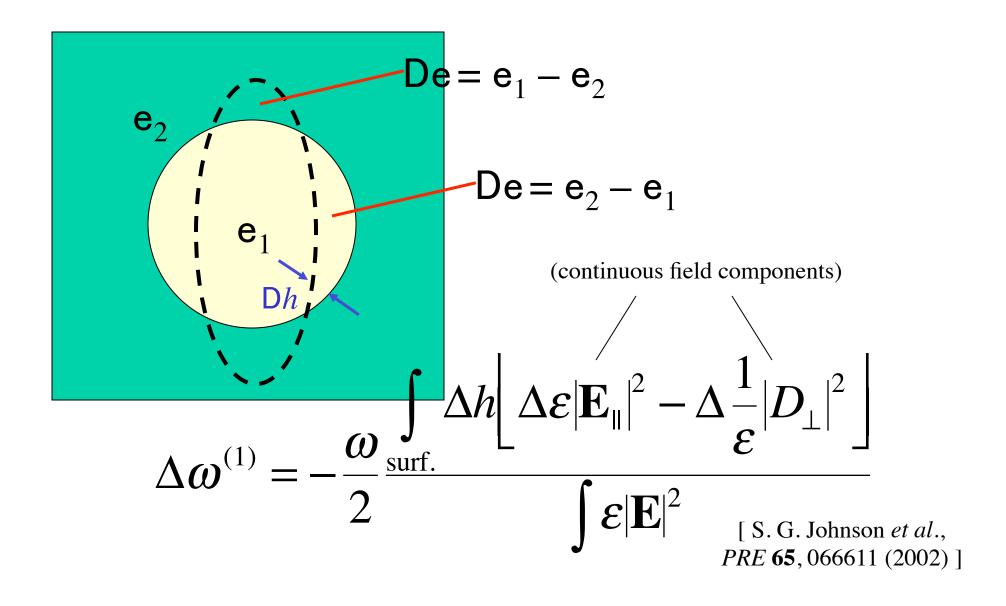


FAILS for high index contrast!

beware field discontinuity... fortunately, a simple correction exists

[S. G. Johnson *et al.*, *PRE* **65**, 066611 (2002)]

Boundary-perturbation theory



Surface roughness disorder?

[http://www.physik.uni-wuerzburg.de/TEP/Website/groups/opto/etching.htm]

loss limited by disorder (in addition to bending)

disordered photonic crystal

[S. Fan *et. al.*, *J. Appl. Phys.* **78**, 1415 (1995).]

small (bounded) disorder does not destroy the bandgap

[A. Rodriguez et. al., Opt. Lett. 30, 3192 (2005).]

Q limited only by crystal size (for a 3d complete gap) ...

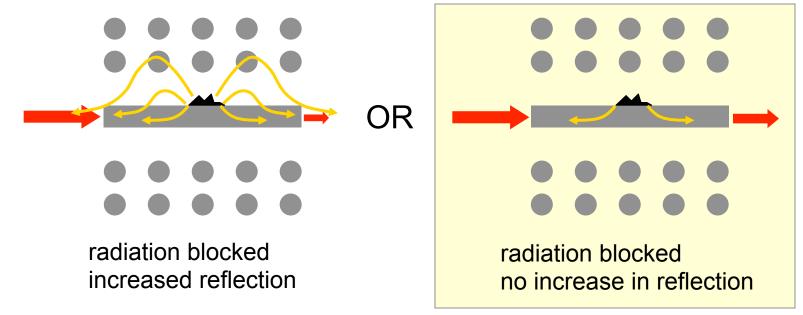
... but waveguides have more trouble ...

Effect of Gap on Disorder (e.g. Roughness) Loss?

[with M. Povinelli]

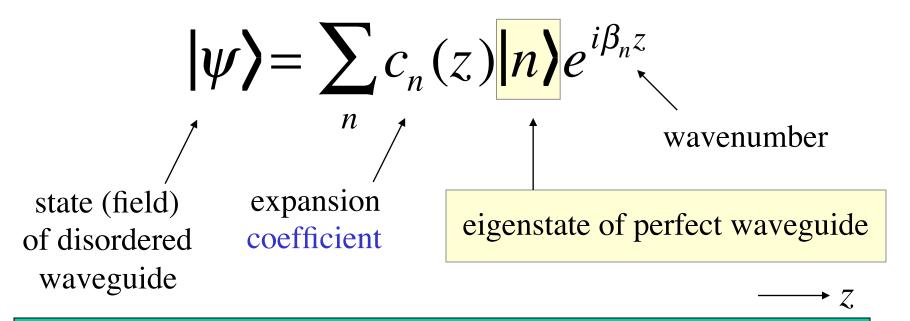
index-guided waveguide

photonic-crystal waveguide: which picture is correct?



Coupled-mode theory

Expand state in ideal eigenmodes, for constant w:



 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc () \bigcirc $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc

What's New in Coupled-Mode Theory?

- Traditional methods (Marcuse, 1970): weak periodicity only
- Strong perodicity (Bloch modes expansion):
 - de Sterke et al. (1996): coupling in time (nonlinearities)
 - Russell (1986): weak perturbations, slowly varying only

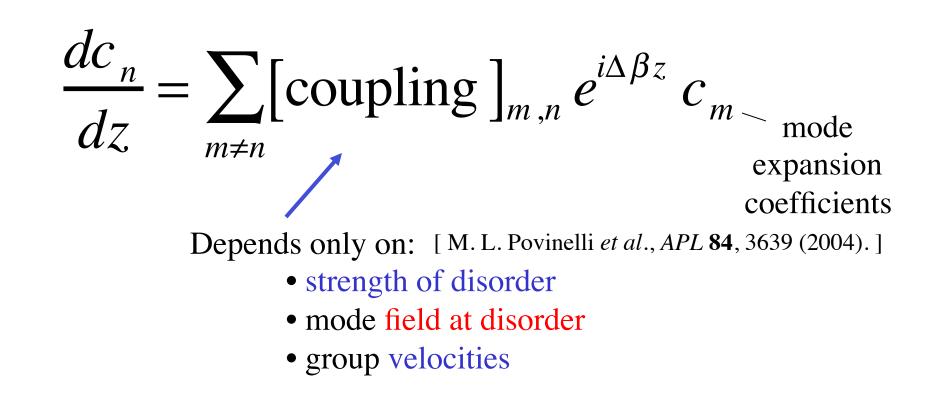
NEW: exact extension, for *z*-dependent (constant w), and: arbitrary periodicity, arbitrary index contrast (full vector), arbitrary disorder [and/or tapers]

[S. G. Johnson *et al.*, *PRE* **66**, 066608 (2002).] [M. Skorobogatiy *et al.*, [M. L. Povinelli *et al.*, *APL* **84**, 3639 (2004).] *Opt. Express* **10**, 1227 (2002).]

scalar

full-vector

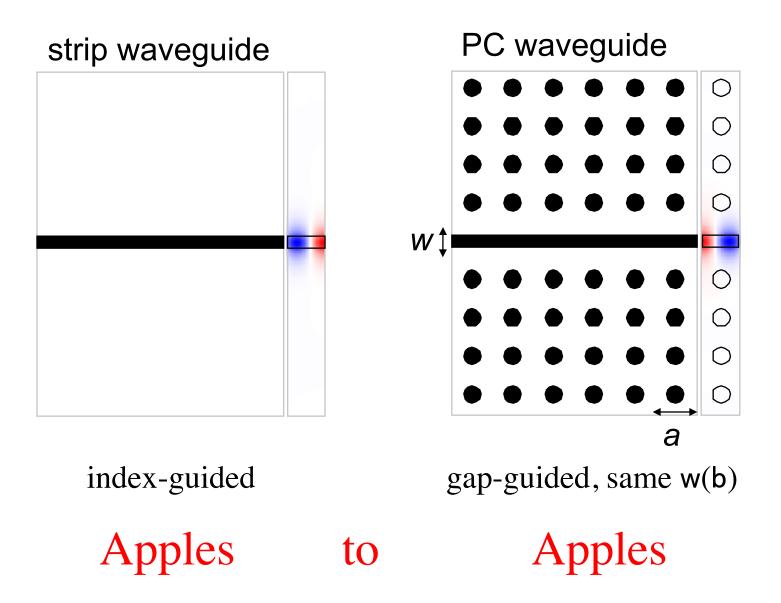
Coupled-wave Theory (skipping all the math...)



Weak disorder, short correlations: refl. ~ lcouplingl² if disorder and modes are "same," then reflection is the same

A Test Case

[M. L. Povinelli et al., APL 84, 3639 (2004).]



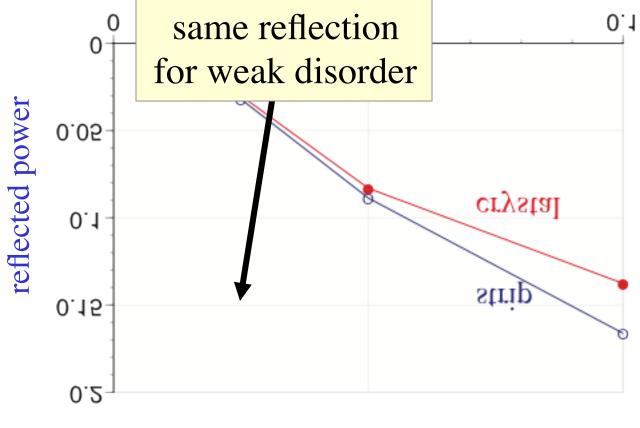
A Test Case

pixels added/removed with probability p



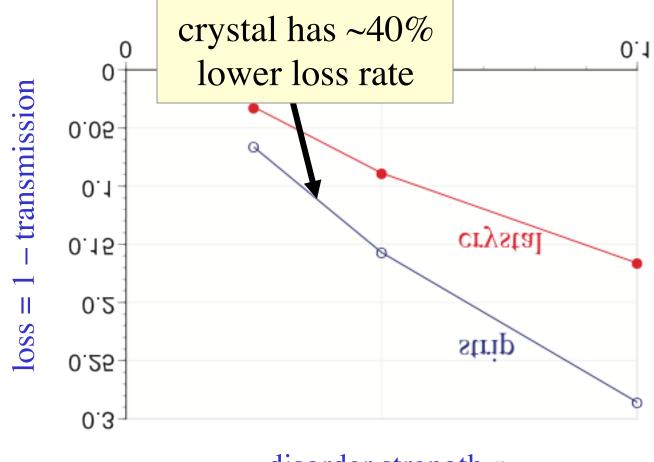
same disorder in both cases, averaged over many FDTD runs

Test Case Results: Reflection



disorder strength p

Test Case Results: Total Loss



disorder strength p

photonic bandgap
(all other things equal)
= unambiguous improvement

But, the news isn't all good...

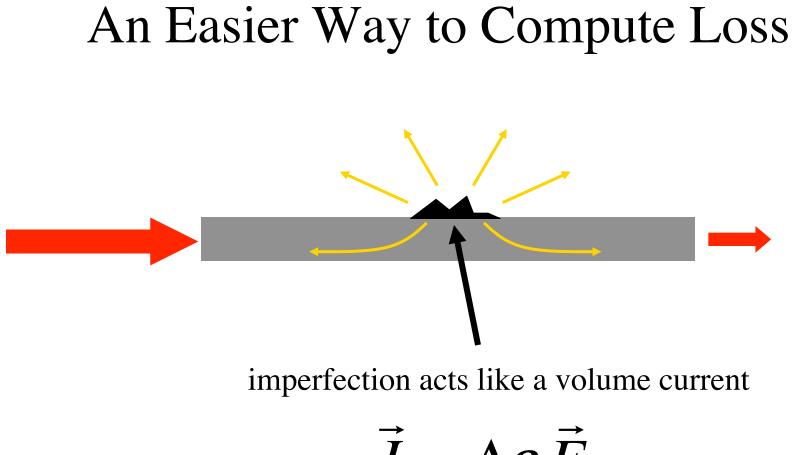
Group-velocity (v) dependence other things being equal

[S. G. Johnson *et al.*, *Proc. 2003 Europ. Symp. Phot. Cryst.* 1, 103.]
[S. Hughes *et al.*, *Phys. Rev. Lett.* 94, 033903 (2005).]

absorption/radiation-scattering loss (per distance) ~ 1/v

reflection loss (per distance) $\sim 1/v^2$ (per time) $\sim 1/v$

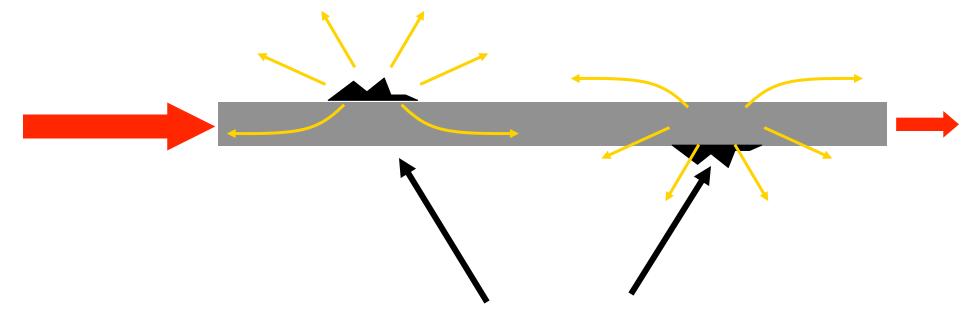
Losses a challenge for slow light...



$$J \sim \Delta \varepsilon E_0$$

volume-current method (i.e., first Born approx. to Green's function)

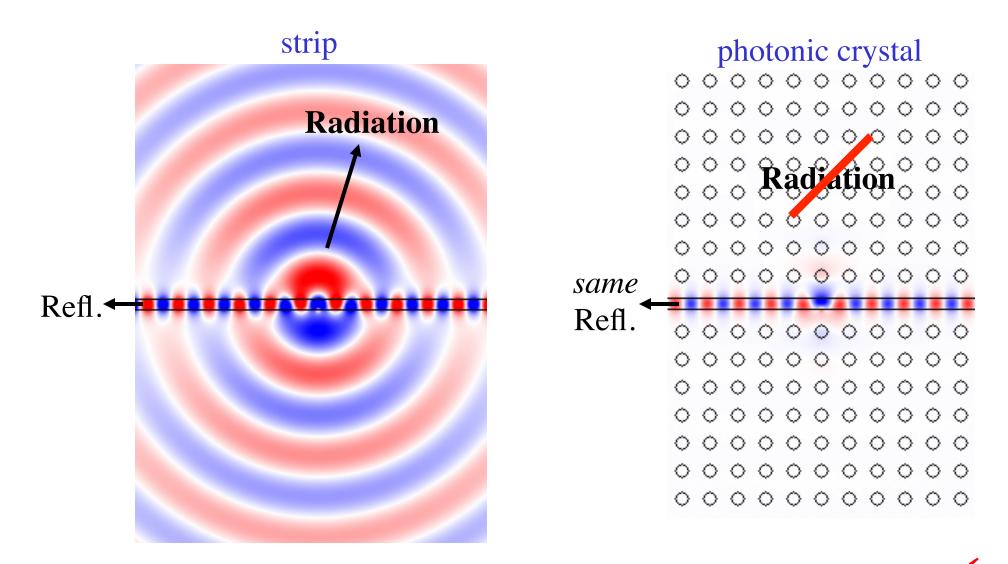
An Easier Way to Compute Loss



uncorrelated disorder adds *incoherently*

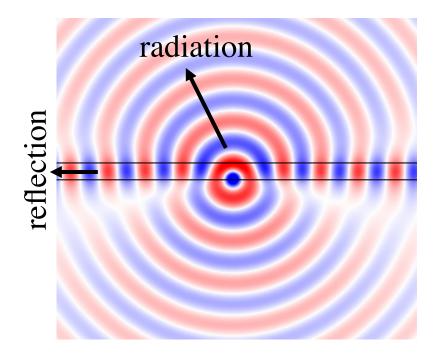
So, compute power P radiated by *one* localized source *J*, and loss rate ~ P * (mean disorder strength)

Losses from Point Scatterers



Loss rate ratio = (Refl. only) / (Refl. + Radiation) = 60% \checkmark

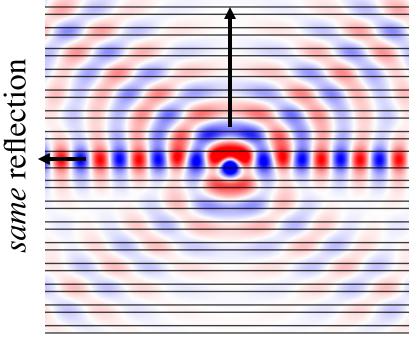
Effect of an *Incomplete* Gap on uncorrelated surface roughness

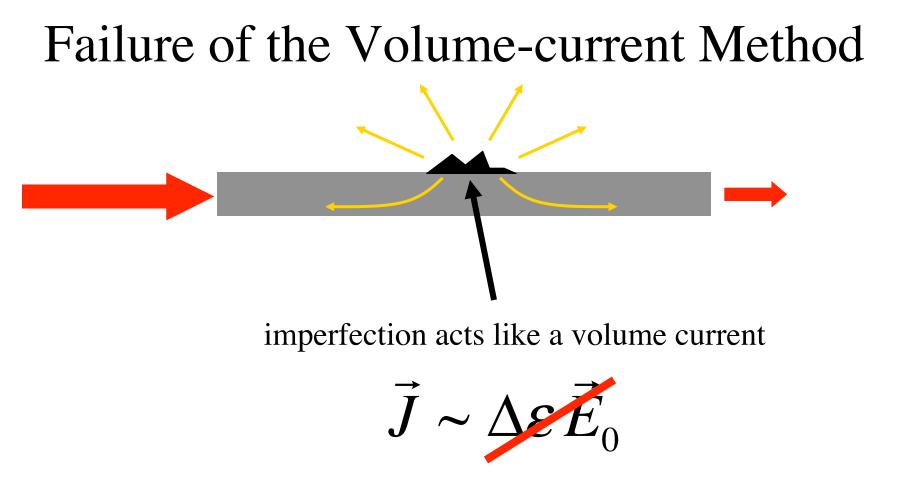


Conventional waveguide (matching modal area)

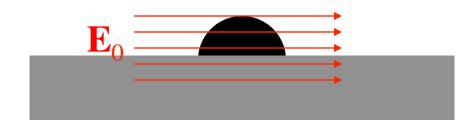
...with Si/SiO₂ Bragg mirrors (1D gap) 50% lower losses (in dB) same reflection

some radiation blocked



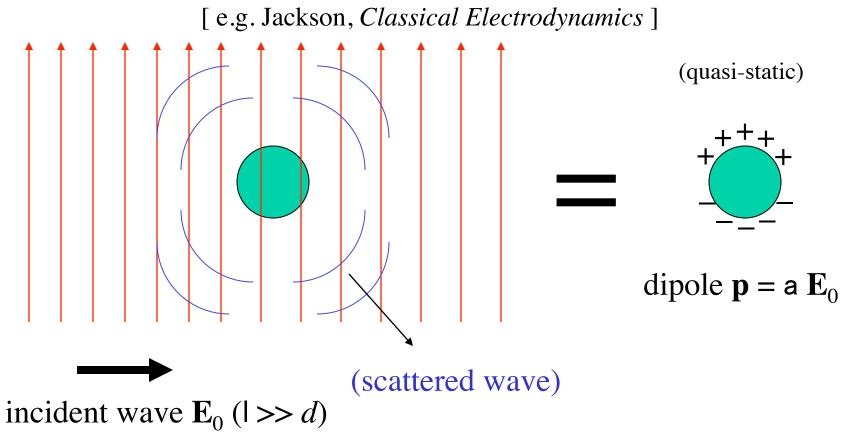


Incorrect for large De (except in 2d TM polarization)



De "bump" changes E (E_{\boxtimes} is discontinuous)

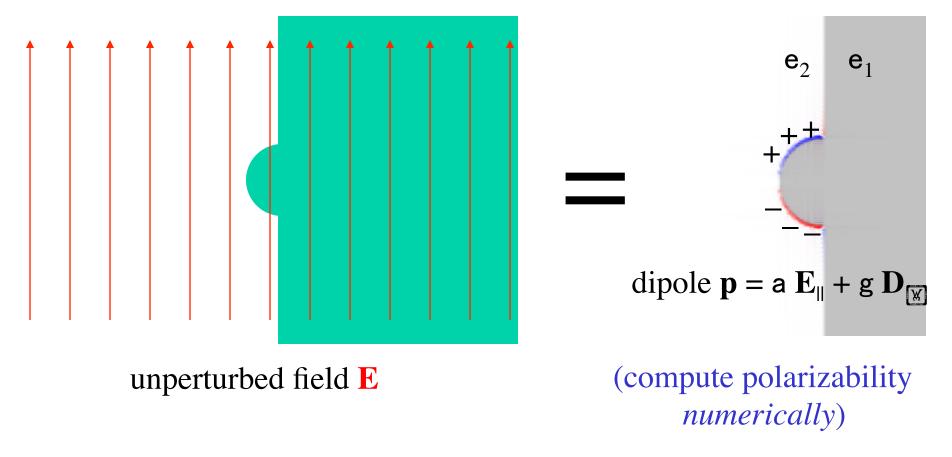
Scattering Theory (for small scatterers)



sphere: effective point current $\mathbf{J} \sim \mathbf{p} / \mathbf{DV}$ = 3 De $\mathbf{E}_0 / (\mathbf{De} + 3)$

=De E_0 for small De, but very different for large De

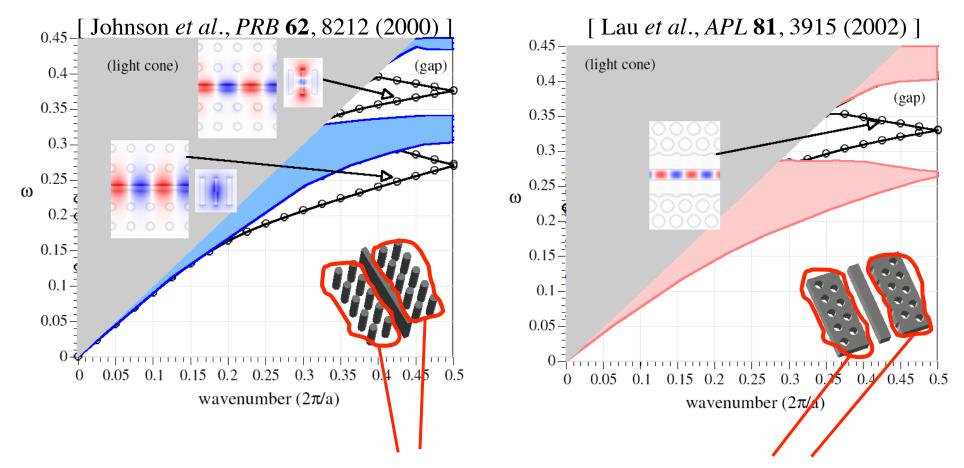
Corrected Volume Current for Large De



effective point current
$$\mathbf{J} \sim (\frac{\mathbf{e}_1 + \mathbf{e}_2}{2} \mathbf{p}_{\parallel} + \mathbf{e} \mathbf{p}_{\bowtie}) / \mathbf{DV}$$

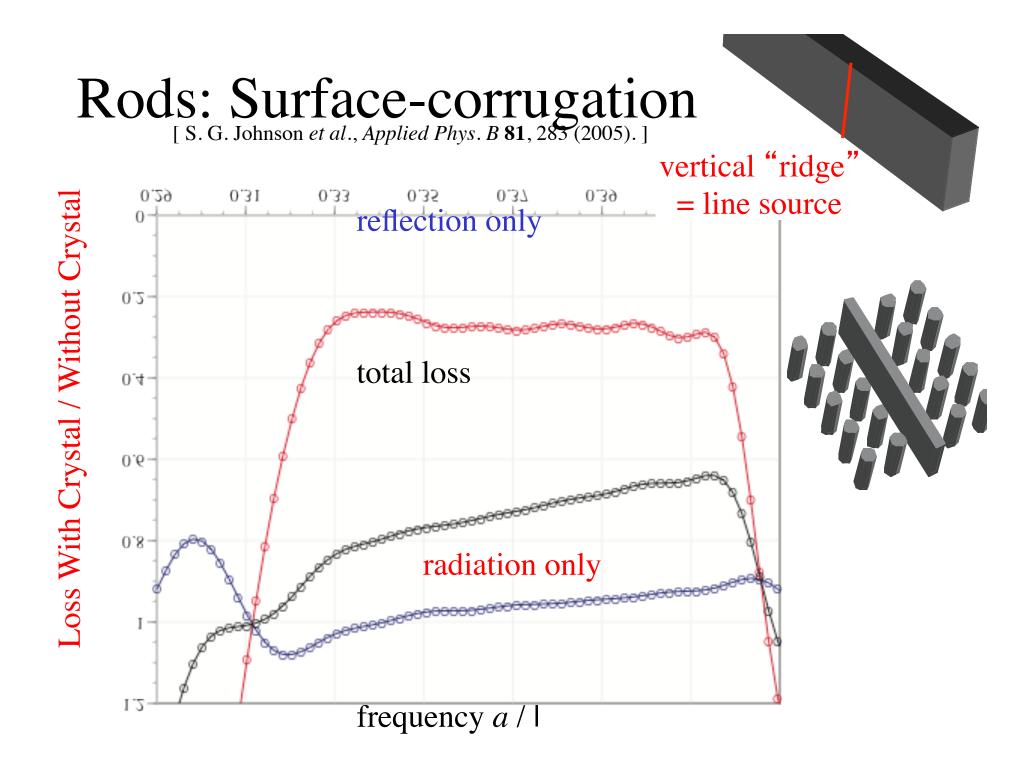
[S.G. Johnson et al., Applied Phys. B 81, 283 (2005).]

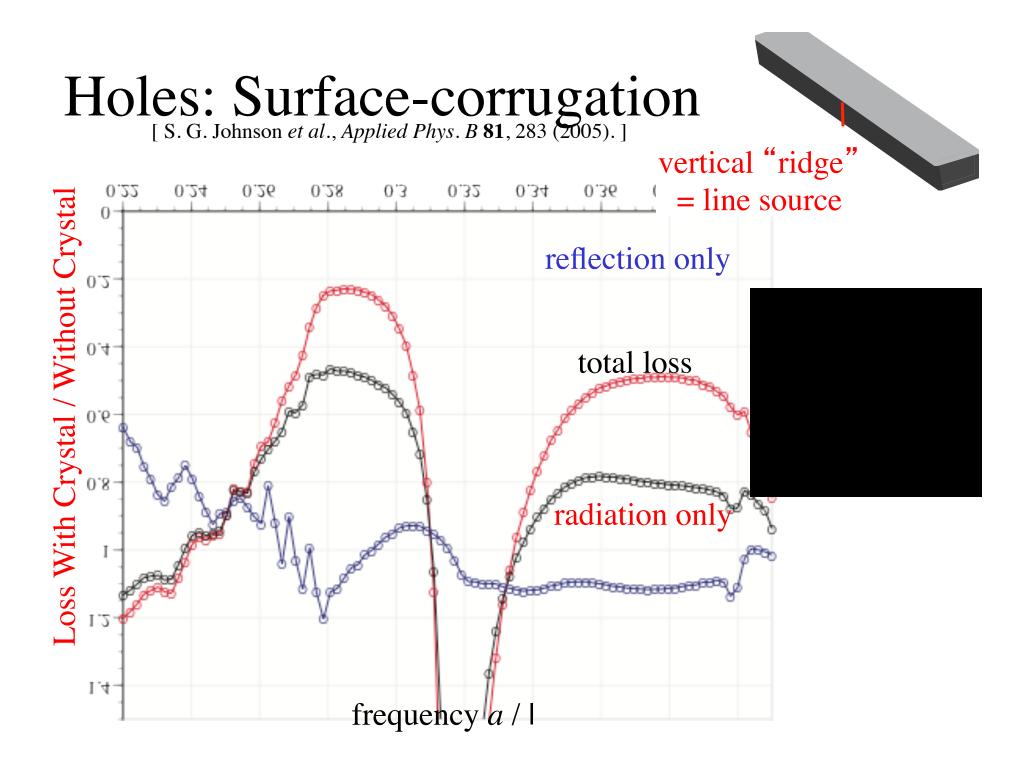
Strip Waveguides in Photonic-Crystal Slabs (3d)



How does *incomplete 3d gap* affect roughness loss?

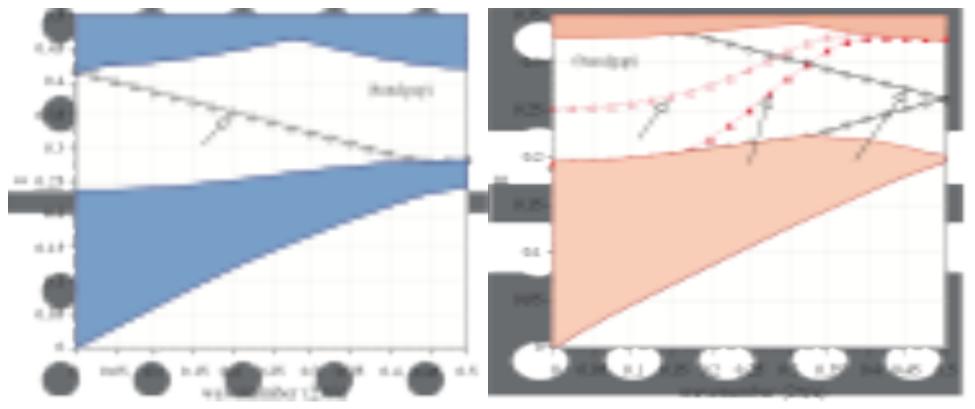
[S. G. Johnson et al., Applied Phys. B 81, 283 (2005).]





Rods vs. Holes? Answer is in 2d.

[S. G. Johnson et al., Applied Phys. B 81, 283 (2005).]



The hole waveguide is not single mode — crystal introduces new modes (in 2d) and new leaky modes (in 3d)

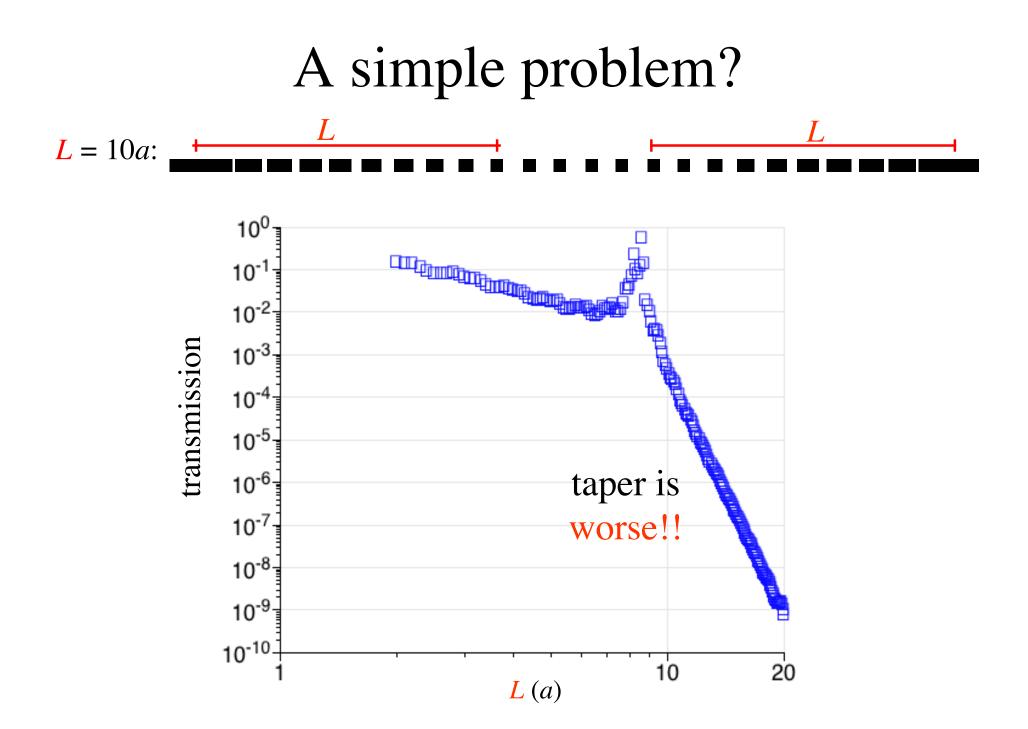
Controlled Deviations: Tapers [Johnson et al., PRE 66, 066608 (2002)]

 We proved an adiabatic theorem for periodic systems: slow transitions = 100% transmission
 — with simple conditions = design criteria

In doing so, we got something more: **a new coupled-mode theory for periodic systems** = efficient modeling + results for other problems

A simple problem?

to to to



What happened to the adiabatic theorem?

[Johnson et al., PRE 66, 066608 (2002)]

There *is* an adiabatic theorem! ...but with two conditions

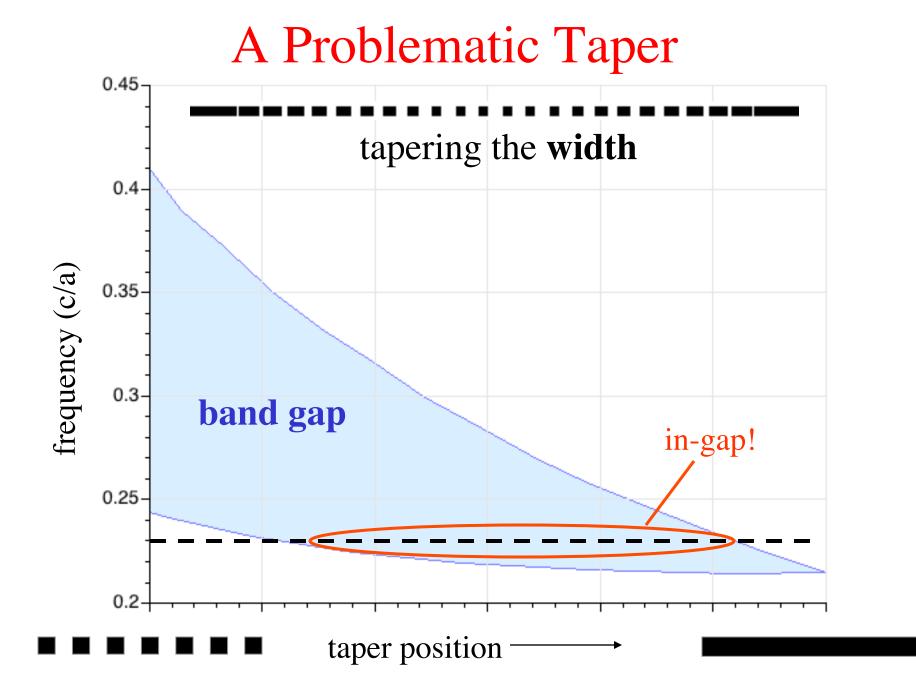
At all intermediate taper points, the operating mode:

Must be propagating (not in the band gap).

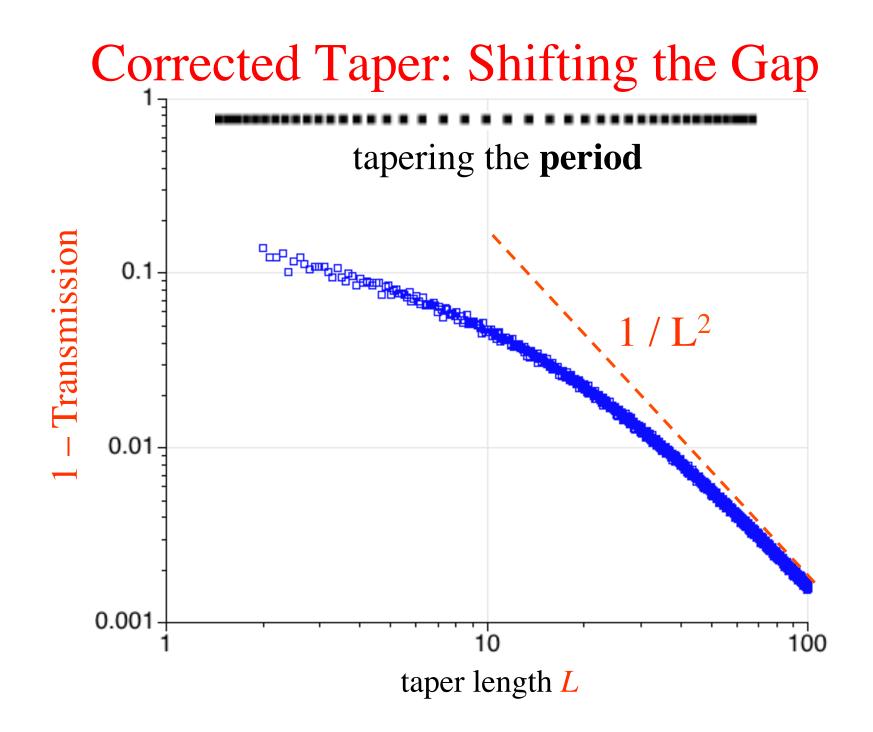
Must be guided (not part of a continuum).

Intuitive!

Easy to violate accidentally in photonic crystals.







There *is* an adiabatic theorem! ...but with two conditions

At all intermediate taper points, the operating mode:

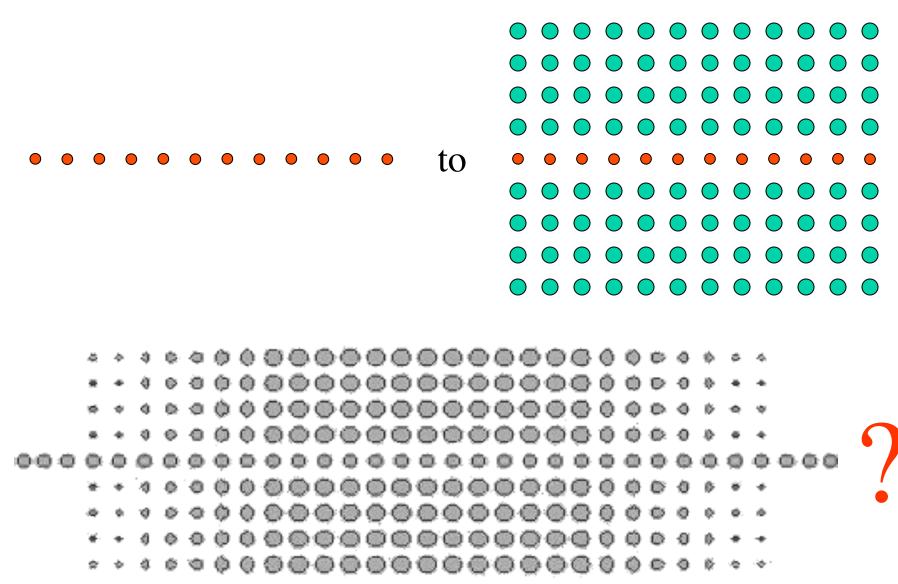
Must be propagating (not in the band gap).

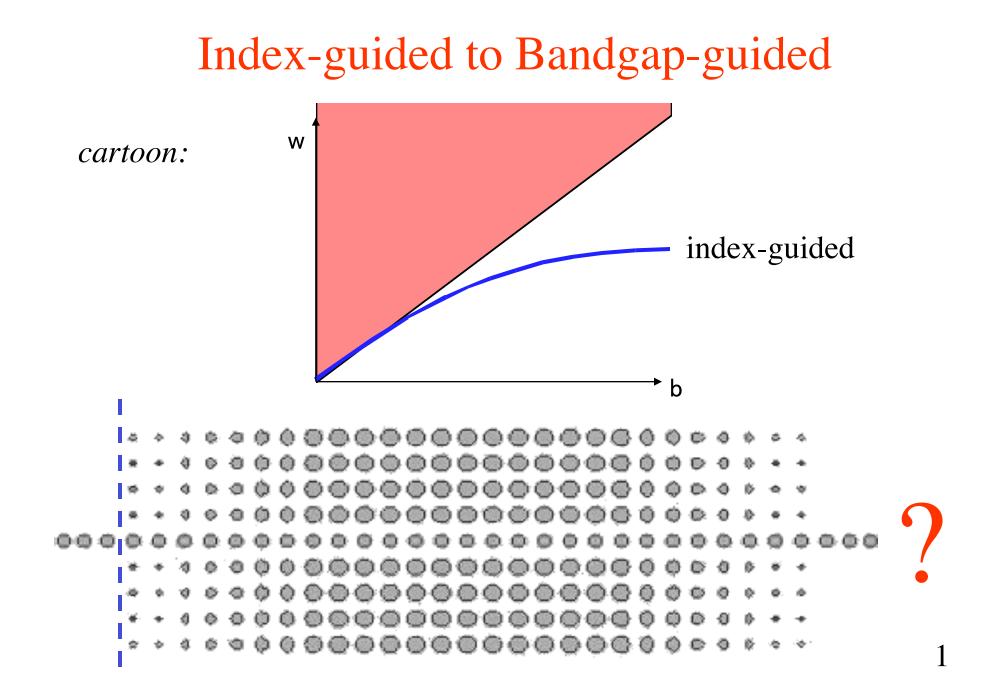
Must be guided (not part of a continuum).

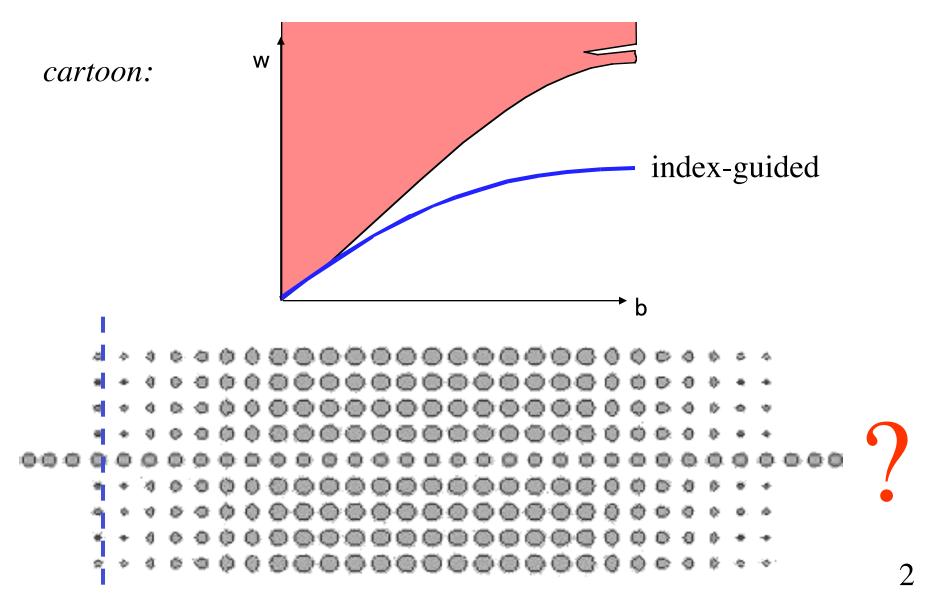
Intuitive!

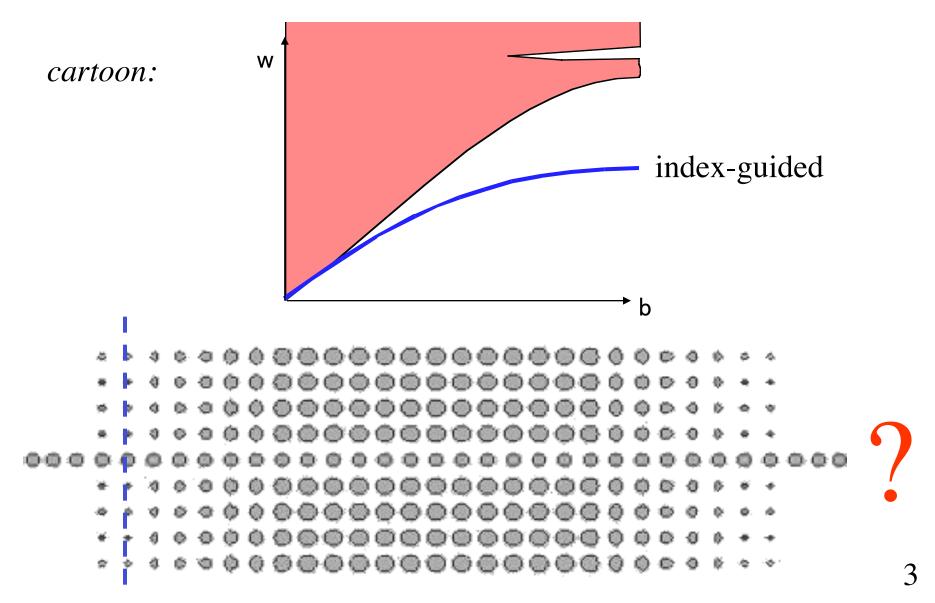
Easy to violate accidentally in photonic crystals.

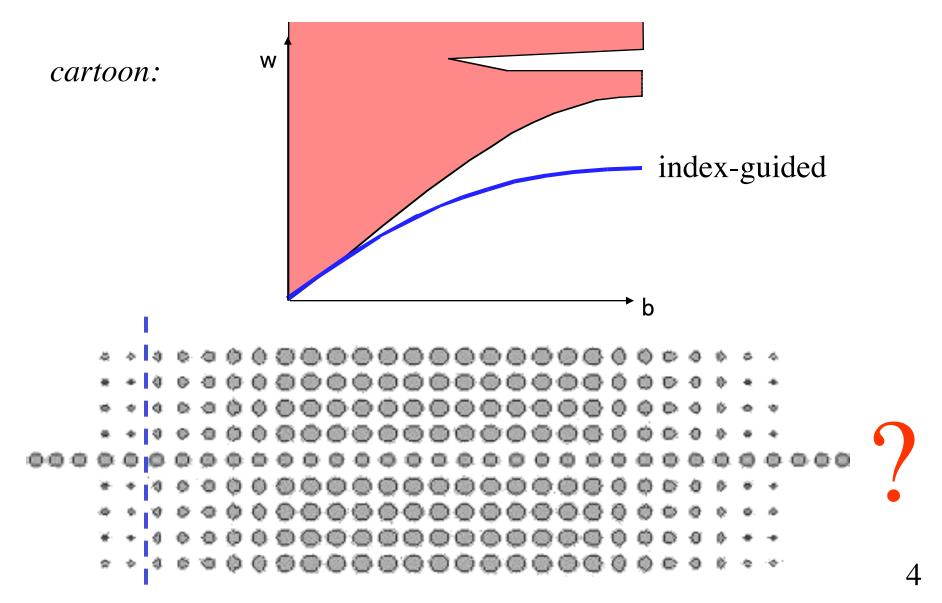
Index-guided to Bandgap-guided

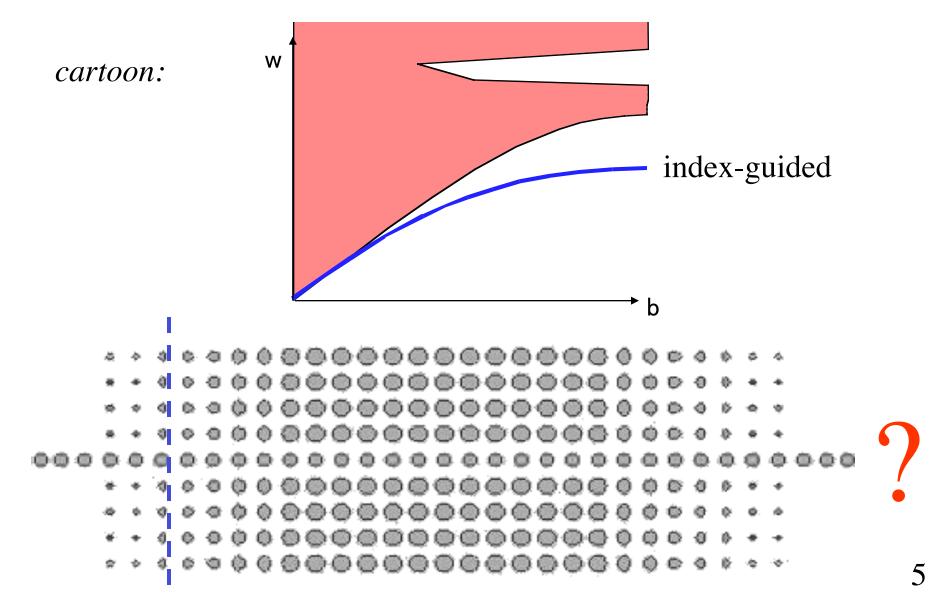


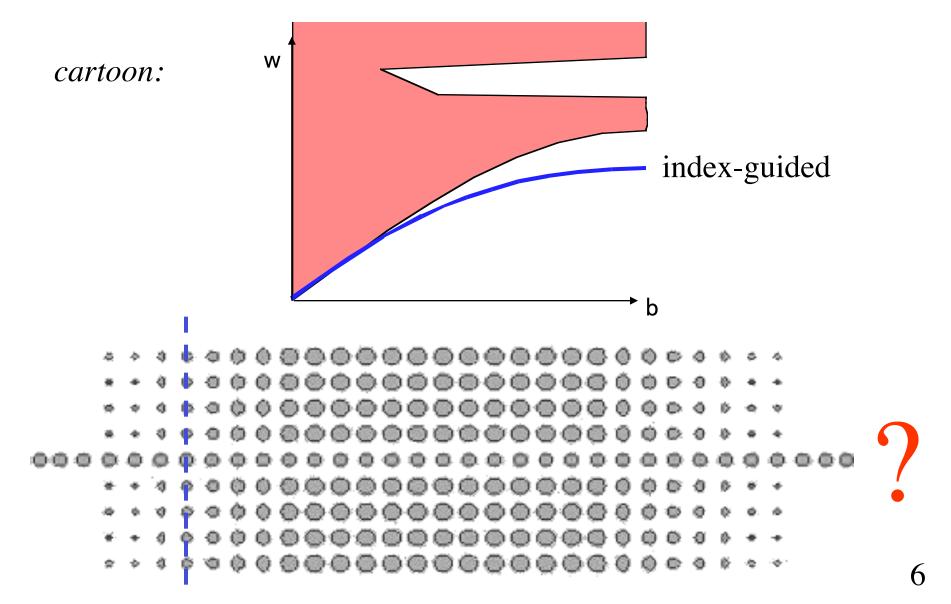


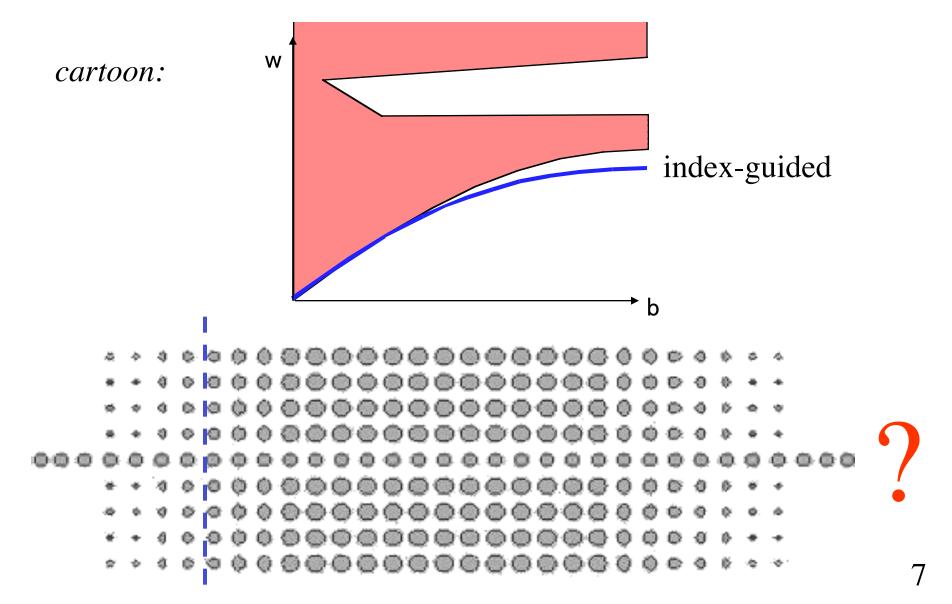


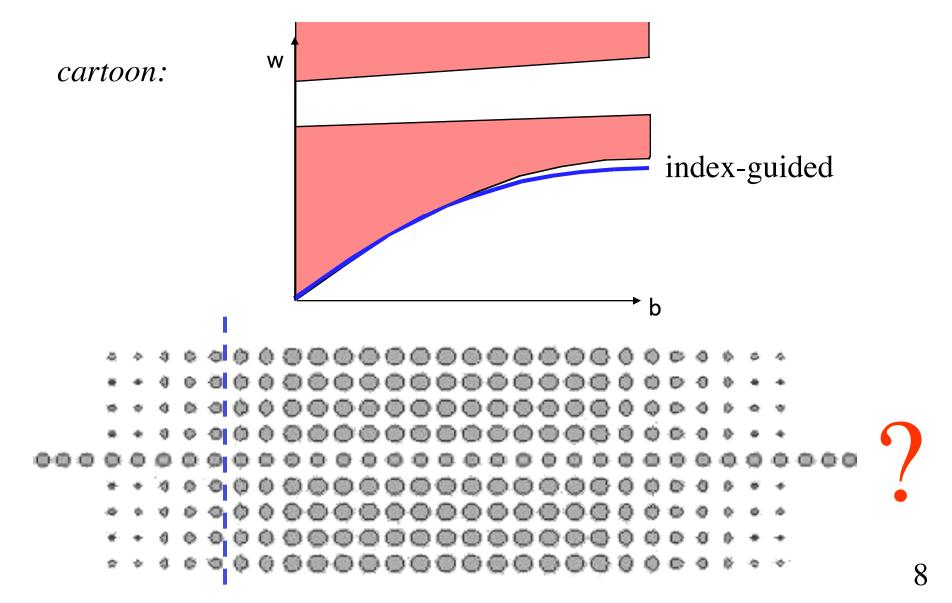


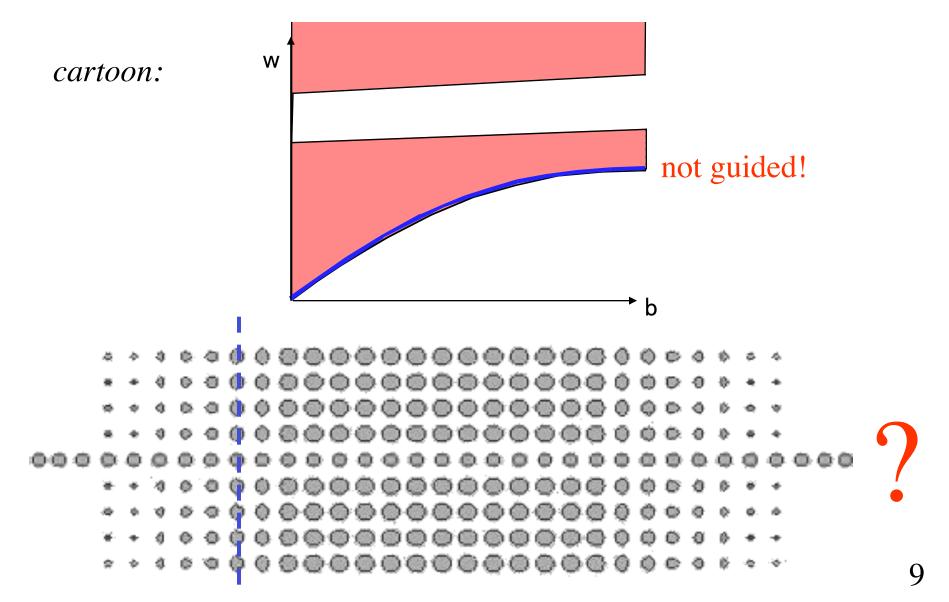


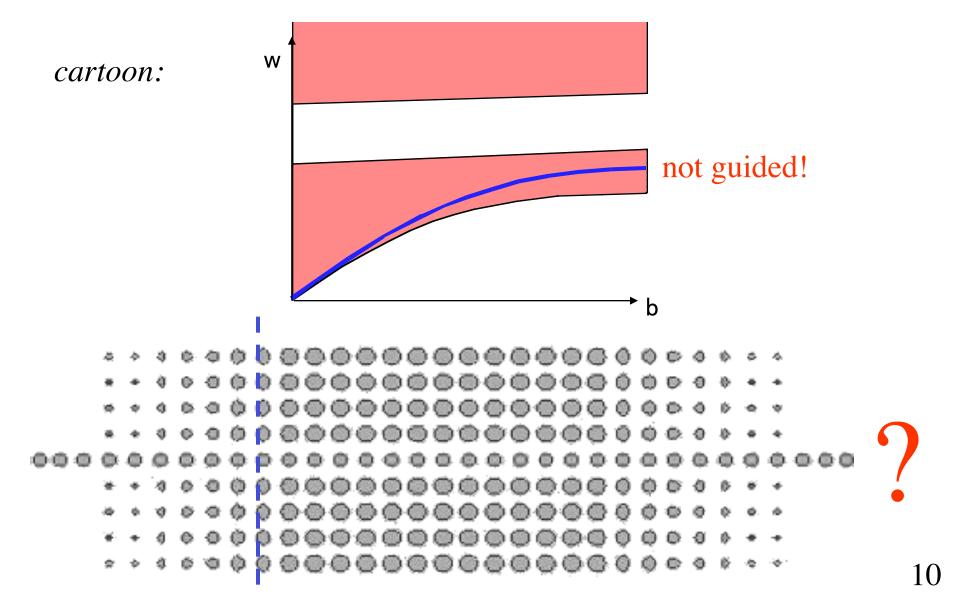


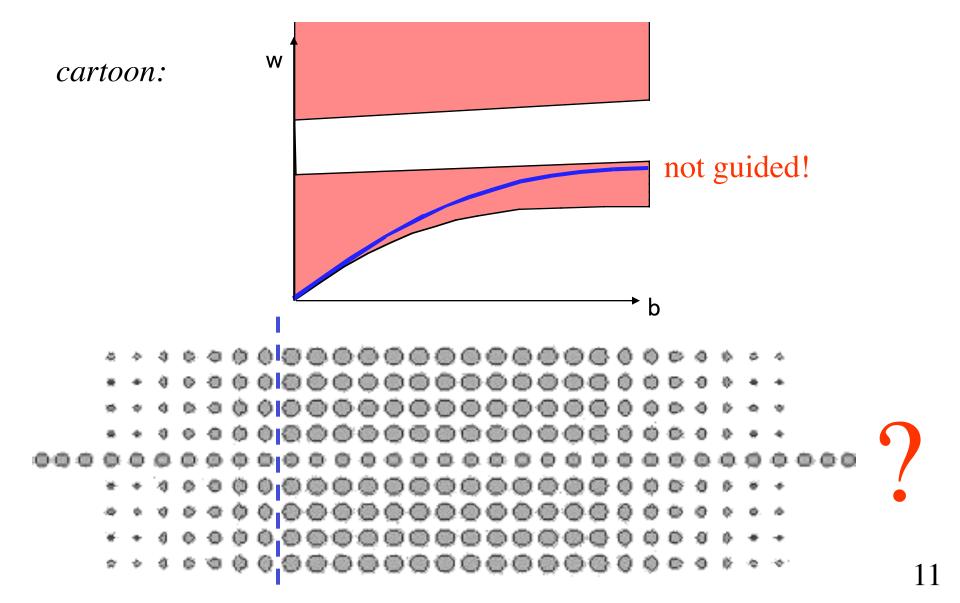


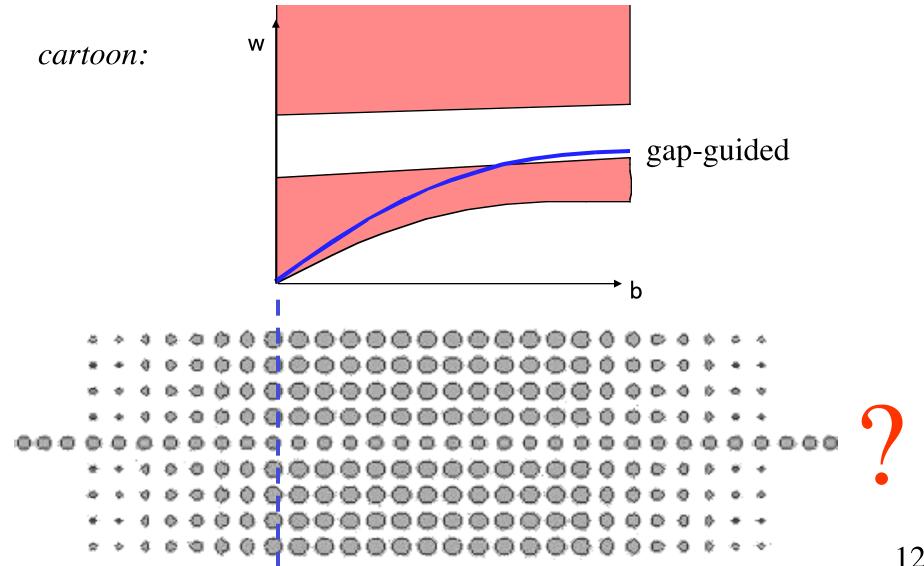




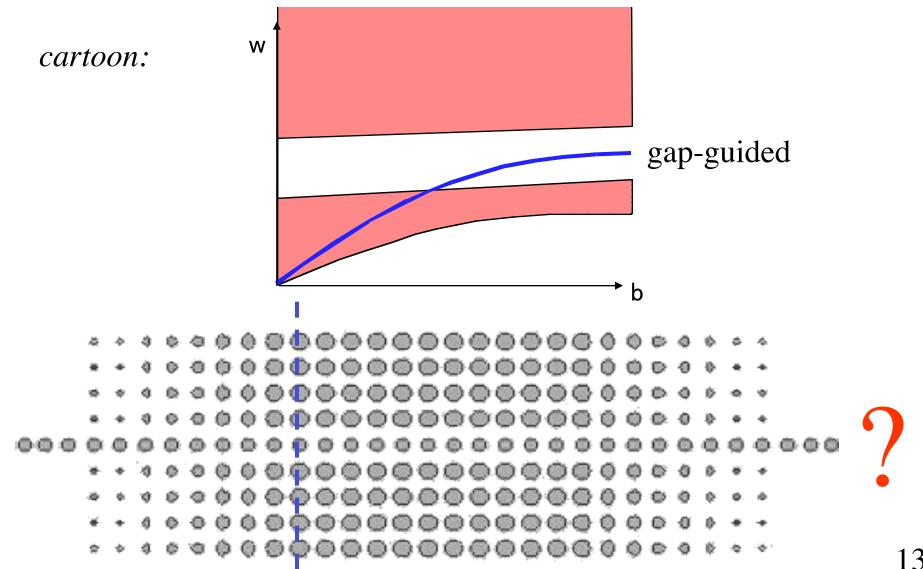








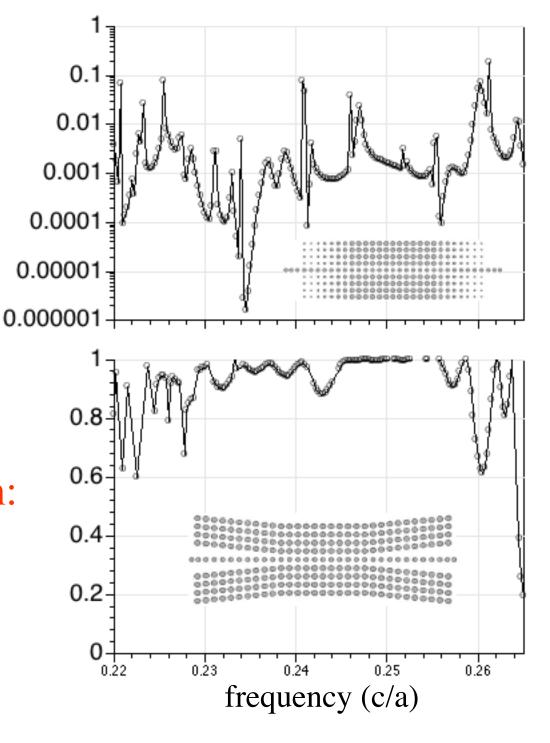
12



13

A Working Transition

continuum always lies below guided band ... just far away

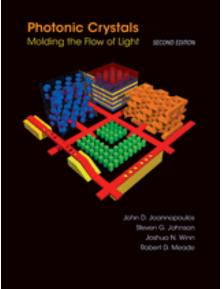


Good Transmission:

The story of photonic crystals:

ng New Materials / Processes → Designing New Structures

Free Materials Online



Photonic Crystals book: jdj.mit.edu/book

Tutorial slides: jdj.mit.edu/photons/tutorial

Free electromagnetic simulation software (FDTD, mode solver, etc.) jdj.mit.edu/wiki