
18.369 Problem Set 1
Due Friday, 17 February 2012.

Problem 1: Adjoints and operators
(a) We defined the adjoint † of operators Ô by:
〈H1, ÔH2〉 = 〈Ô†H1,H2〉 for all H1 and H2 in the
vector space. Show that for a finite-dimensional
Hilbert space, where H is a column vector hn
(n = 1, · · · ,d), Ô is a square d × d matrix, and
〈H(1),H(2)〉 is the ordinary conjugated dot product

∑n h(1)∗n h(2)n , the above adjoint definition corresponds
to the conjugate-transpose for matrices. (Thus, as
claimed in class, “swapping rows and columns” is
the consequence of the “real” definition of transpo-
sition/adjoints, not the source.)

In the subsequent parts of this problem, you
may not assume that Ô is finite-dimensional (nor
may you assume any specific formula for the inner
product).

(b) Show that if Ô is simply a number o, then Ô† = o∗.
(This is not the same as the previous question, since
Ô here can act on infinite-dimensional spaces.)

(c) If a linear operator Ô satisfies Ô† = Ô−1, then the
operator is called unitary. Show that a unitary op-
erator preserves inner products (that is, if we apply
Ô to every element of a Hilbert space, then their in-
ner products with one another are unchanged). Show
that the eigenvalues u of a unitary operator have unit
magnitude (|u| = 1) and that its eigenvectors can be
chosen to be orthogonal to one another.

(d) For a non-singular operator Ô (i.e. Ô−1 exists), show
that (Ô−1)† = (Ô†)−1. (Thus, if Ô is Hermitian then
Ô−1 is also Hermitian.)

Problem 2: Completeness
(a) Prove that the eigenvectors Hn of a finite-

dimensional Hermitian operator Ô (a d× d matrix)
are complete: that is, that any d-dimensional vector
can be expanded as a sum ∑n cnHn in the eigenvec-
tors Hn with some coefficients cn. It is sufficient to

show that there are d linearly independent eigenvec-
tors Hn. For example, you can follow these steps:

(i) Show that every d×d Hermitian matrix O has
at least one nonzero eigenvector H1 [... use the
fundamental theorem of algebra: every polyno-
mial with degree > 0 has at least one (possibly
complex) root].

(ii) Show that the space of V1 = {H | 〈H,H1〉= 0}
orthogonal to H1 is preserved (transformed into
itself or a subset of itself) by Ô. From this,
show that we can form a (d−1)× (d−1) Her-
mitian matrix whose eigenvectors (if any) give
(via a similarity transformation) the remaining
(if any) eigenvectors of Ô.

(iii) By induction, form an orthonormal basis of d
eigenvectors for the d-dimensional space.

(b) Completeness is not automatic for eigenvectors in
general. Give an example of a non-singular non-
Hermitian operator whose eigenvectors are not com-
plete. (A 2×2 matrix is fine. This case is also called
“defective.”)

(c) Completeness of the eigenfunctions is not automatic
for Hermitian operators on infinite-dimensional
spaces either; they need to have some additional
properties (e.g. “compactness”) for this to be true.
However, it is true of most operators that we en-
counter in physical problems. If a particular op-
erator did not have a complete basis of eigenfunc-
tions, what would this mean about our ability to sim-
ulate the solutions on a computer in a finite compu-
tational box (where, when you discretize the prob-
lem, it turns approximately into a finite-dimensional
problem)? No rigorous arguments required here, just
your thoughts.

Problem 3: Maxwell eigenproblems

(a) In class, we eliminated E from Maxwell’s equa-
tions to get an eigenproblem in H alone, of the form
Θ̂H(x) = ω2

c2 H(x). Show that if you instead elimi-
nate H, you cannot get a Hermitian eigenproblem in
E except for the trivial case ε = constant. Instead,
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show that you get a generalized Hermitian eigen-
problem: an equation of the form ÂE(x) = ω2

c2 B̂E(x),
where both Â and B̂ are Hermitian operators.

(b) For any generalized Hermitian eigenproblem where
B̂ is positive definite (i.e. 〈E, B̂E〉> 0 for all E(x) 6=
01), show that the eigenvalues (i.e., the solutions of
ÂE= λ B̂E) are real and that different eigenfunctions
E1 and E2 satisfy a modified kind of orthogonality.
Show that B̂ for the E eigenproblem above was in-
deed positive definite.

(c) Alternatively, show that B̂−1Â is Hermitian under a
modified inner product 〈E,E〉B = 〈E, B̂E〉 for Hermi-
tian Â and B̂ and positive-definite B̂; the results from
the previous part then follow.

(d) Show that both the E and H formulations lead to
generalized Hermitian eigenproblems with real ω if
we allow magnetic materials µ(x) 6= 1 (but require µ

real, positive, and independent of H or ω).

(e) µ and ε are only ordinary numbers for isotropic
media. More generally, they are 3× 3 matrices
(technically, rank 2 tensors)—thus, in an anisotropic
medium, by putting an applied field in one direction,
you can get dipole moment in different direction in
the material. Show what conditions these matrices
must satisfy for us to still obtain a generalized Her-
mitian eigenproblem in E (or H) with real eigen-
frequencies ω .

1Here, when we say E(x) 6= 0 we mean it in the sense of general-
ized functions; loosely, we ignore isolated points where E is nonzero,
as long as such points have zero integral, since such isolated values are
not physically observable. See e.g. Gelfand and Shilov, Generalized
Functions.
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