18.369 Problem Set 1

Due Friday, 17 February 2012.

Problem 1: Adjoints and operators

(a) We defined the adjoint † of operators Ô by: ⟨H₁, ÔH₂⟩ = ⟨Ô[†]H₁, H₂⟩ for all H₁ and H₂ in the vector space. Show that for a *finite-dimensional* Hilbert space, where H is a column vector h_n (n = 1,...,d), Ô is a square d × d matrix, and ⟨H⁽¹⁾, H⁽²⁾⟩ is the ordinary conjugated dot product Σ_n h_n^{(1)*}h_n⁽²⁾, the above adjoint definition corresponds to the conjugate-transpose for matrices. (Thus, as claimed in class, "swapping rows and columns" is the *consequence* of the "real" definition of transposition/adjoints, not the source.)

In the subsequent parts of this problem, you may *not* assume that \hat{O} is finite-dimensional (nor may you assume any specific formula for the inner product).

- (b) Show that if Ô is simply a number o, then Ô[†] = o^{*}. (This is *not* the same as the previous question, since Ô here can act on infinite-dimensional spaces.)
- (c) If a linear operator \hat{O} satisfies $\hat{O}^{\dagger} = \hat{O}^{-1}$, then the operator is called **unitary**. Show that a unitary operator preserves inner products (that is, if we apply \hat{O} to every element of a Hilbert space, then their inner products with one another are unchanged). Show that the eigenvalues *u* of a unitary operator have unit magnitude (|u| = 1) and that its eigenvectors can be chosen to be orthogonal to one another.
- (d) For a non-singular operator \hat{O} (i.e. \hat{O}^{-1} exists), show that $(\hat{O}^{-1})^{\dagger} = (\hat{O}^{\dagger})^{-1}$. (Thus, if \hat{O} is Hermitian then \hat{O}^{-1} is also Hermitian.)

Problem 2: Completeness

(a) Prove that the eigenvectors H_n of a *finite-dimensional* Hermitian operator \hat{O} (a $d \times d$ matrix) are *complete*: that is, that any *d*-dimensional vector can be expanded as a sum $\sum_n c_n H_n$ in the eigenvectors H_n with some coefficients c_n . It is sufficient to

show that there are *d* linearly independent eigenvectors H_n . For example, you can follow these steps:

- (i) Show that every d × d Hermitian matrix O has at least one nonzero eigenvector H₁ [... use the fundamental theorem of algebra: every polynomial with degree > 0 has at least one (possibly complex) root].
- (ii) Show that the space of $V_1 = \{H \mid \langle H, H_1 \rangle = 0\}$ orthogonal to H_1 is preserved (transformed into itself or a subset of itself) by \hat{O} . From this, show that we can form a $(d-1) \times (d-1)$ Hermitian matrix whose eigenvectors (if any) give (via a similarity transformation) the remaining (if any) eigenvectors of \hat{O} .
- (iii) By induction, form an orthonormal basis of *d* eigenvectors for the *d*-dimensional space.
- (b) Completeness is not automatic for eigenvectors in general. Give an example of a non-singular *non-Hermitian* operator whose eigenvectors are *not* complete. (A 2×2 matrix is fine. This case is also called "defective.")
- (c) Completeness of the eigenfunctions is not automatic for Hermitian operators on infinite-dimensional spaces either; they need to have some additional properties (e.g. "compactness") for this to be true. However, it is true of most operators that we encounter in physical problems. If a particular operator did *not* have a complete basis of eigenfunctions, what would this mean about our ability to simulate the solutions on a computer in a finite computational box (where, when you discretize the problem, it turns approximately into a finite-dimensional problem)? No rigorous arguments required here, just your thoughts.

Problem 3: Maxwell eigenproblems

(a) In class, we eliminated **E** from Maxwell's equations to get an eigenproblem in **H** alone, of the form $\hat{\Theta}\mathbf{H}(\mathbf{x}) = \frac{\omega^2}{c^2}\mathbf{H}(\mathbf{x})$. Show that if you instead eliminate **H**, you *cannot* get a Hermitian eigenproblem in **E** except for the trivial case ε = constant. Instead,

show that you get a generalized Hermitian eigenproblem: an equation of the form $\hat{A}\mathbf{E}(\mathbf{x}) = \frac{\omega^2}{c^2}\hat{B}\mathbf{E}(\mathbf{x})$, where both \hat{A} and \hat{B} are Hermitian operators.

- (b) For *any* generalized Hermitian eigenproblem where \hat{B} is positive definite (i.e. $\langle \mathbf{E}, \hat{B}\mathbf{E} \rangle > 0$ for all $\mathbf{E}(\mathbf{x}) \neq 0^1$), show that the eigenvalues (i.e., the solutions of $\hat{A}\mathbf{E} = \lambda \hat{B}\mathbf{E}$) are real and that different eigenfunctions \mathbf{E}_1 and \mathbf{E}_2 satisfy a modified kind of orthogonality. Show that \hat{B} for the \mathbf{E} eigenproblem above was indeed positive definite.
- (c) Alternatively, show that $\hat{B}^{-1}\hat{A}$ is Hermitian under a modified inner product $\langle \mathbf{E}, \mathbf{E} \rangle_B = \langle \mathbf{E}, \hat{B}\mathbf{E} \rangle$ for Hermitian \hat{A} and \hat{B} and positive-definite \hat{B} ; the results from the previous part then follow.
- (d) Show that *both* the **E** and **H** formulations lead to generalized Hermitian eigenproblems with real ω if we allow magnetic materials $\mu(\mathbf{x}) \neq 1$ (but require μ real, positive, and independent of **H** or ω).
- (e) μ and ε are only ordinary numbers for *isotropic* media. More generally, they are 3×3 matrices (technically, rank 2 tensors)—thus, in an *anisotropic medium*, by putting an applied field in one direction, you can get dipole moment in different direction in the material. Show what conditions these matrices must satisfy for us to still obtain a generalized Hermitian eigenproblem in **E** (or **H**) with real eigenfrequencies ω .

¹Here, when we say $\mathbf{E}(\mathbf{x}) \neq 0$ we mean it in the sense of generalized functions; loosely, we ignore isolated points where \mathbf{E} is nonzero, as long as such points have zero integral, since such isolated values are not physically observable. See e.g. Gelfand and Shilov, *Generalized Functions*.