18.369 Midterm Exam (Spring 2012)

You have two hours.

Problem 1: Definiteness (30 pts)

Recall from pset 2 that the electric field **E** and the current density **J** at a frequency ω are related by

$$\hat{A}\mathbf{E} = \left(\nabla \times \nabla \times - \frac{\omega^2}{c^2} \varepsilon \right) \mathbf{E} = i\omega\mu_0 \mathbf{J}$$

Recall also that we "integrate by parts" on $\nabla \times$ using the identity $\nabla \cdot (\mathbf{F} \times \mathbf{G}) = (\nabla \times \mathbf{F}) \cdot \mathbf{G} - \mathbf{F} \cdot (\nabla \times \mathbf{G})$ along with the divergence theorem $\iiint \nabla \cdot \mathbf{K} = \oiint \mathbf{K} \cdot \mathbf{dA}$.

Take ω to be real and > 0. Suppose you are in a dissipative medium $\varepsilon(\mathbf{x})$ [scalar/isotropic], so that ε is a **complex number** with Im ε > 0 everywhere (for ω > 0), enclosed within a perfect-metal box of some arbitrary smooth shape (so that the surface-parallel component of **E** is zero at the metal walls).

- (a) Show that the time-average power P expended by any current **J**, given by $P = -\frac{1}{2} \operatorname{Re} \int \mathbf{E}^* \cdot \mathbf{J}$ from class (via Poynting's theorem), is necessarily positive (P > 0).
- (b) Relate Θ = ∇ × ¹/_ε∇× to some operator Ô such that Ô + Ô[†] is positive-definite under the usual inner product ⟨**H**, **H**'⟩ = ∫ **H**^{*} · **H**' (where the boundary conditions are that the surface-parallel component of ∇ × **H** vanishes at the walls). From class, the eigenvalues of Θ are ^{ω_n²}/_{c²}, where ω_n are the eigenfrequencies, here taken to have positive real parts. From the definiteness of Ô + Ô[†], show that the eigensolutions are decaying in time (as you would expect in a dissipative system).

Problem 2: Symmetry (30 points)

The symmetry operations for the regular hexagon (symmetry group $C_{6\nu}$) and the equilateral triangle (symmetry group $C_{3\nu}$, from problem set 2) are shown in figure 1. The corresponding character tables are:

C_{6v}	E	$2C_6$	2	$2C_3$		2	3σ		$3\sigma'$
Γ_1	1	1		1		1		1	1
Γ_2	1	1		1		1		-1	-1
Γ ₃	1	-1		1		-1		1	-1
Γ_4	1	-1		1		1	-1		1
Γ_5	2	-1	-	-1	2		0		0
Γ_6	2	1	-	-1	-2		0		0
		C_{3v}	E	20	23	3σ			
		R_1	1	1]	1		
		R_2	1	1		-1			
		R_3	2	-	1	0			

(where we have called the $C_{6\nu}$ representations $\Gamma_{1,...,6}$ and the $C_{3\nu}$ representations $R_{1,...,3}$ to distinguish them).

Figure 1: Left: symmetry operations $(C_{3\nu})$ for the triangle (three mirror planes and 3-fold rotations). Right: symmetry operations $(C_{3\nu})$ for the hexagon (six mirror planes and 6-fold rotations).

(a) Suppose you have a 2d (xy) perfect metallic cavity, filled with air, in the shape of a regular hexagon, and we consider the TM polarization (E_z only, E_z = 0 at walls). Sketch contour plots (label ±) of the lowest-frequency eigenmodes corresponding to Γ₃, Γ₅, and Γ₆. (Show degenerate modes as orthogonal pairs.) [Hint: to get a feel for things, try projecting a function that is positive in one or two of the triangular wedges and zero elsewhere.]

(b) Suppose that we have an infinite metal plate (lying in the *xy* plane with some finite thickness in *z*) suspended in air, with a hole punched through it. The hole is in the shape of an equilateral triangle, with one side of the triangle falling on the *x* axis. We now shine a normal-incident planewave (propagating in the +z direction) at the plate, polarized with its electric field in the $\pm x$ direction. If we decompose (Fourier transform) the transmitted wave (propagating in the air on the other side of the plate) into planewaves, some portion will be a planewave propagating in the +z direction. Explain why this forwardtransmitted wave must be polarized in the $\pm x$ direction.

Problem 3: Bands (30 points)

Suppose that we have two dielectric waveguides 1 and 2 in air, in two dimensions for the TM polarization, with different widths so that their band diagrams are slightly different: the dispersion relations $\omega(k)$ of the fundamental modes of both waveguides are shown in figure 2.

- (a) Suppose that both waveguides are made of the same material ε_{hi} but have different widths w₁ and w₂. From the band diagram, which of w₁ and w₂ is bigger?
- (b) Suppose that we put the two waveguides alongside one another (but far enough apart that their modes only slightly overlap). In between them, we put a sequence of small dielectric posts with period *a*, as shown in figure 3. Assume that the waveguides are far enough apart, and the posts are small enough, that the waveguide eigenfunctions are only *weakly perturbed* from those of the isolated waveguides. If we start with the fundamental mode propagating in waveguide 1 at a frequency ω_0 , and after propagating for some distance we observe that much of the energy is now propagating in waveguide 2 (in the *same* direction), what can you say about the period *a*? (Relate *a* to some *k*'s that you label schematically in the band diagram.)
- (c) Suppose that you have the same situation as in the previous part, but now you want to start in waveguide 1 at ω_0 and end up in waveguide 2 propagating in the *opposite* direction. What would you choose *a* to be (again in terms of labelled *k*'s)? (If there is more than one possible *a*, give the smallest choice.)
- (d) If you calculated the band diagram for this whole structure (i.e. both waveguides + posts) together in MPB, with the *a* from part (c), sketch what the

Figure 2: Dispersion relations $\omega(k)$ of fundamental modes of two different waveguides 1 and 2, both in air (hence, same light cone $\omega \ge c|k|$).

Figure 3: Two different waveguides 1 and 2 alongside one another, between which we put a sequence of small dielectric posts with period *a*. Assume that the waveguides are far enough apart, and the posts are small enough, that the waveguide eigenfunctions are only weakly perturbed.

band diagram should look like for $k \in [0, \pi/a]$ (label ω_0 , and label corresponding points in figure 2 and your new band diagram with A, B, C, ... as needed to make the quantitative relationships clear). It might be clearer to do this in two steps: first plot the "folded" band diagram for a period *a* but assuming the waveguides are infinitely far apart and the posts are infinitesimal (i.e. no perturbation to the solutions, just a relabeling), and then plot what happens for a finite separation with finite-size posts.