
18.369 Midterm Exam (Spring 2012)

You have two hours.

Problem 1: Definiteness (30 pts)
Recall from pset 2 that the electric field E and the current
density J at a frequency ω are related by

ÂE =

(
∇×∇×−ω2

c2 ε

)
E = iωµ0J.

Recall also that we “integrate by parts” on ∇× using the
identity ∇ ·(F×G) = (∇×F) ·G−F ·(∇×G) along with
the divergence theorem

˝
∇ ·K =

‚
K ·dA.

Take ω to be real and > 0. Suppose you are in a dissipa-
tive medium ε(x) [scalar/isotropic], so that ε is a complex
number with Imε > 0 everywhere (for ω > 0), enclosed
within a perfect-metal box of some arbitrary smooth shape
(so that the surface-parallel component of E is zero at the
metal walls).

(a) Show that the time-average power P expended by
any current J, given by P = − 1

2 Re
´

E∗ · J from
class (via Poynting’s theorem), is necessarily posi-
tive (P > 0).

(b) Relate Θ = ∇× 1
ε

∇× to some operator Ô such that
Ô + Ô† is positive-definite under the usual inner
product 〈H,H′〉 =

´
H∗ ·H′ (where the boundary

conditions are that the surface-parallel component of
∇×H vanishes at the walls). From class, the eigen-
values of Θ are ω2

n
c2 , where ωn are the eigenfrequen-

cies, here taken to have positive real parts. From the
definiteness of Ô+ Ô†, show that the eigensolutions
are decaying in time (as you would expect in a dissi-
pative system).

Problem 2: Symmetry (30 points)

The symmetry operations for the regular hexagon (sym-
metry group C6v) and the equilateral triangle (symmetry
group C3v, from problem set 2) are shown in figure 1. The
corresponding character tables are:

C6v E 2C6 2C3 C2 3σ 3σ ′

Γ1 1 1 1 1 1 1
Γ2 1 1 1 1 −1 −1
Γ3 1 −1 1 −1 1 −1
Γ4 1 −1 1 −1 −1 1
Γ5 2 −1 −1 2 0 0
Γ6 2 1 −1 −2 0 0

C3v E 2C3 3σ

R1 1 1 1
R2 1 1 -1
R3 2 -1 0

(where we have called the C6v representations Γ1,...,6
and the C3v representations R1,...,3 to distinguish them).
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Figure 1: Left: symmetry operations (C3v) for the triangle
(three mirror planes and 3-fold rotations). Right: symme-
try operations (C3v) for the hexagon (six mirror planes and
6-fold rotations).

(a) Suppose you have a 2d (xy) perfect metallic cavity,
filled with air, in the shape of a regular hexagon, and
we consider the TM polarization (Ez only, Ez = 0 at
walls). Sketch contour plots (label ±) of the lowest-
frequency eigenmodes corresponding to Γ3, Γ5, and
Γ6. (Show degenerate modes as orthogonal pairs.)
[Hint: to get a feel for things, try projecting a func-
tion that is positive in one or two of the triangular
wedges and zero elsewhere.]
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(b) Suppose that we have an infinite metal plate (lying
in the xy plane with some finite thickness in z) sus-
pended in air, with a hole punched through it. The
hole is in the shape of an equilateral triangle, with
one side of the triangle falling on the x axis. We
now shine a normal-incident planewave (propagat-
ing in the +z direction) at the plate, polarized with
its electric field in the ±x direction. If we decom-
pose (Fourier transform) the transmitted wave (prop-
agating in the air on the other side of the plate) into
planewaves, some portion will be a planewave propa-
gating in the +z direction. Explain why this forward-
transmitted wave must be polarized in the ±x direc-
tion.

Problem 3: Bands (30 points)
Suppose that we have two dielectric waveguides 1 and 2
in air, in two dimensions for the TM polarization, with
different widths so that their band diagrams are slightly
different: the dispersion relations ω(k) of the fundamental
modes of both waveguides are shown in figure 2.

(a) Suppose that both waveguides are made of the same
material εhi but have different widths w1 and w2.
From the band diagram, which of w1 and w2 is big-
ger?

(b) Suppose that we put the two waveguides alongside
one another (but far enough apart that their modes
only slightly overlap). In between them, we put a
sequence of small dielectric posts with period a, as
shown in figure 3. Assume that the waveguides are
far enough apart, and the posts are small enough,
that the waveguide eigenfunctions are only weakly
perturbed from those of the isolated waveguides. If
we start with the fundamental mode propagating in
waveguide 1 at a frequency ω0, and after propagating
for some distance we observe that much of the en-
ergy is now propagating in waveguide 2 (in the same
direction), what can you say about the period a? (Re-
late a to some k′s that you label schematically in the
band diagram.)

(c) Suppose that you have the same situation as in the
previous part, but now you want to start in waveg-
uide 1 at ω0 and end up in waveguide 2 propagating
in the opposite direction. What would you choose
a to be (again in terms of labelled k’s)? (If there is
more than one possible a, give the smallest choice.)

(d) If you calculated the band diagram for this whole
structure (i.e. both waveguides + posts) together
in MPB, with the a from part (c), sketch what the
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Figure 2: Dispersion relations ω(k) of fundamental
modes of two different waveguides 1 and 2, both in air
(hence, same light cone ω ≥ c|k|).
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Figure 3: Two different waveguides 1 and 2 alongside one
another, between which we put a sequence of small di-
electric posts with period a. Assume that the waveguides
are far enough apart, and the posts are small enough, that
the waveguide eigenfunctions are only weakly perturbed.

band diagram should look like for k ∈ [0,π/a] (la-
bel ω0, and label corresponding points in figure 2
and your new band diagram with A, B, C, ... as
needed to make the quantitative relationships clear).
It might be clearer to do this in two steps: first plot
the “folded” band diagram for a period a but assum-
ing the waveguides are infinitely far apart and the
posts are infinitesimal (i.e. no perturbation to the so-
lutions, just a relabeling), and then plot what happens
for a finite separation with finite-size posts.
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