When PML isn't P: Limitations of Perfectly Matched Layers

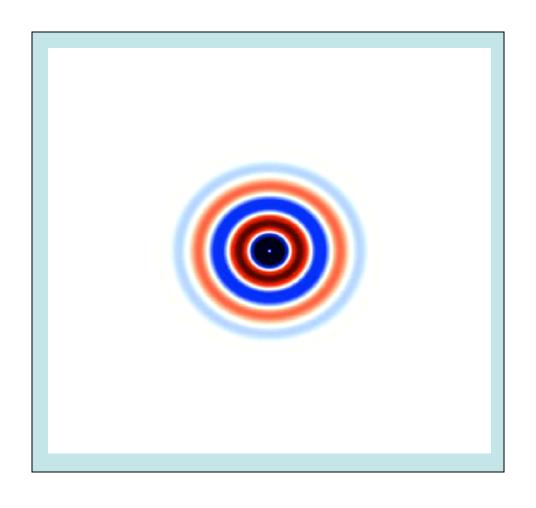
Steven G. Johnson MIT Applied Mathematics

Dr. Ardavan Oskooi, Po-Ru Loh, Dr. Lei Zhang

also: J. White (MIT), M. Skorobogatiy (E. Polytechnique), Y. Avniel (MIT), M. Ibanescu (OmniGuide Inc.)

Why Absorbers?

Finite-difference/finite-element volume discretizations need to artificially truncate space for a computer simulation.



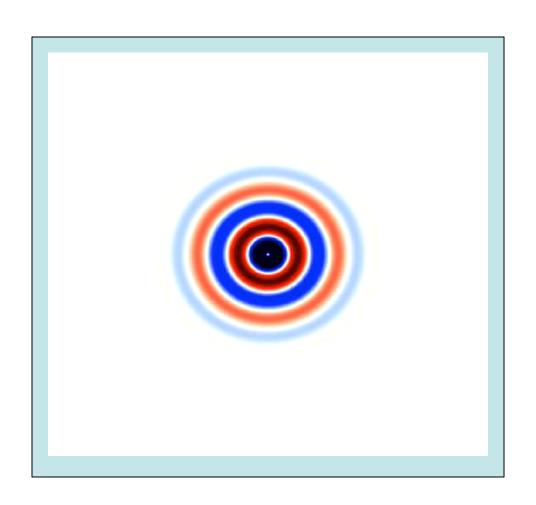
In a wave equation, a hard-wall truncation gives reflection artifacts.

An old goal: "absorbing boundary condition" (ABC) that absorbs outgoing waves.

Problem: good ABCs are hard to find in > 1d.

Absorbing Boundary Layers?

...instead of absorbing boundary *condition*, make an absorbing *layer* that attenuates waves...



Simplistic approach:

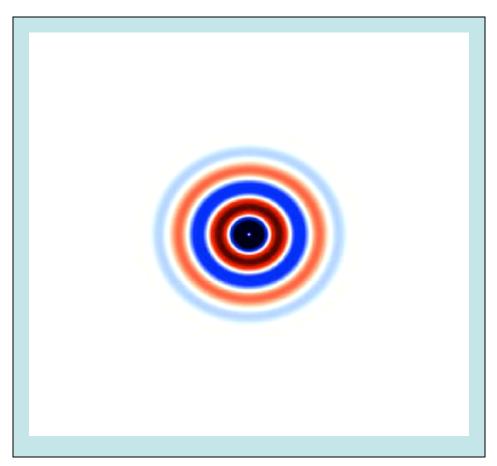
Just put some conductivity σ around the boundaries?

Problem: reflections at

interface of absorbing region

Absorbing Boundary Layers?

...instead of absorbing boundary *condition*, make an absorbing *layer* that attenuates waves...



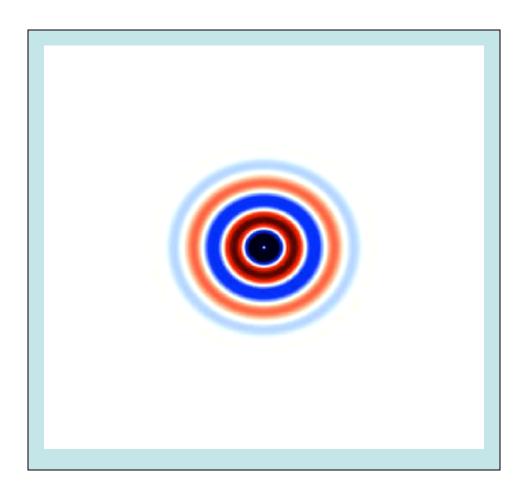
Less simplistic approach:

Conductivity σ by boundaries turns on gradually to reduce reflections — e.g., quadratically

Better, but visible reflections w/o very thick/gradual absorber

Perfectly Matched Layers (PMLs)

Bérenger, 1994: design an *artificial* absorbing layer that is analytically reflectionless



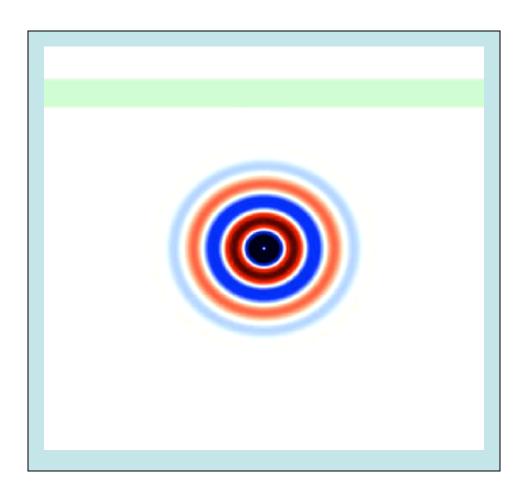
Works remarkably well.

Now ubiquitous in FD/FEM wave-equation solvers.

(Here, I'll mainly discuss the example of Maxwell's eq.)

Perfectly Matched Layers (PMLs)

Bérenger, 1994: design an *artificial* absorbing layer that is analytically reflectionless



Even works in inhomogeneous media (e.g. waveguides).

Two questions:

• *Review:* How does PML work?

• When does PML *not* work?

Two questions:

• Review: How does PML work?

• When does PML *not* work?

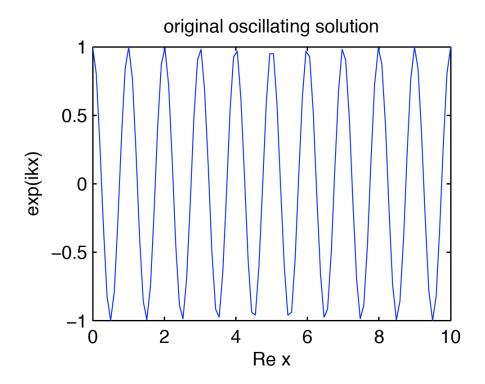
Three equivalent approaches

- Bérenger (1994): design artificial equations ("split fields") so that planewaves in vacuum are reflectionless
- Sacks et al. (1995): design artificial materials (anisotropic ϵ, μ) so that planewaves in vacuum are reflectionless
- Chew & Weedon (1994): complex coordinate "stretching" so that waves in *any*(?) medium are attenuated.
 - ... Ward & Pendry (1996): coordinate transformations are equivalent to transformed/anisotropic ε, μ
 - ... leads back to artificial materials (Teixeira & Chew, 1998)

Starting point: A propagating wave

• Say we want to absorb wave traveling in +x direction in an x-invariant medium at a frequency $\omega > 0$.

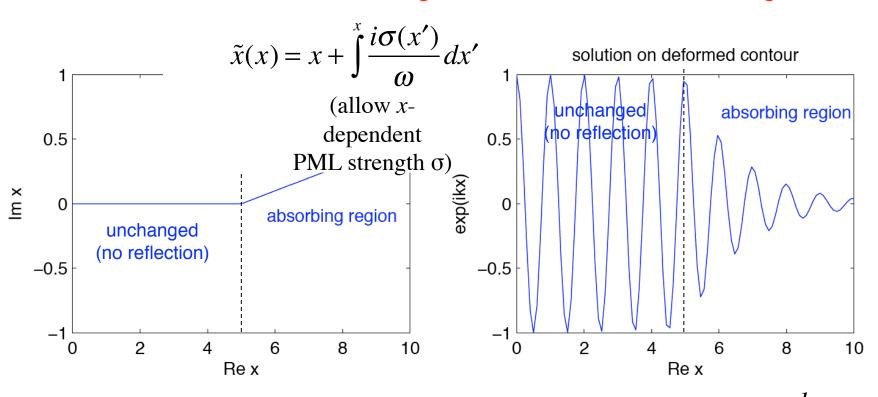
fields ~
$$f(y,z)e^{i(kx-\omega t)}$$
 (usually, $k > 0$)



(only x in wave equation is via $\frac{\partial}{\partial x}$ terms.)

Step 1: Analytically continue

Fields (& wave equation terms) are *analytic* in x, so we can evaluate at complex x & still solve same equations



fields ~
$$f(y,z)e^{i(kx-\omega t)} \rightarrow f(y,z)e^{i(kx-\omega t)-\frac{k}{\omega}\sigma x}$$

Step 2: Coordinate transformation

Weird to solve equations for complex coordinates \tilde{x} , so do coordinate transformation back to real x.

$$\tilde{x}(x) = x + \int_{-\infty}^{x} \frac{i\sigma(x')}{\omega} dx'$$

(allow *x*-dependent PML strength σ)

$$\frac{\partial}{\partial x} \xrightarrow{1} \frac{\partial}{\partial \tilde{x}} \xrightarrow{2} \left[\frac{1}{1 + \frac{i\sigma(x)}{\omega}} \right] \frac{\partial}{\partial x}$$

fields
$$\sim f(y,z)e^{i(kx-\omega t)} \to f(y,z)e^{i(kx-\omega t)-\frac{k}{\omega}\int_{-\infty}^{x} \sigma(x')dx'}$$

nondispersive materials: $k/\omega \sim \text{constant}$ $\Rightarrow \text{decay rate independent of } \omega$

Step 3: Effective materials

In Maxwell's equations, $\nabla \times \mathbf{E} = i\omega \mu \mathbf{H}$, $\nabla \times \mathbf{H} = -i\omega \varepsilon \mathbf{E} + \mathbf{J}$, coordinate transformations are *equivalent* to transformed *materials* (Ward & Pendry, 1996: "transformational optics")

$$\{\varepsilon,\mu\} \to \frac{J\{\varepsilon,\mu\}J^T}{\det J}$$

x PML Jacobian

$$J = \begin{pmatrix} (1 + i\sigma / \omega)^{-1} & & \\ & 1 & \\ & & 1 \end{pmatrix}$$

$$\left(\frac{\partial x}{\partial \tilde{x}}\right)$$

for isotropic starting materials:

$$J = \begin{pmatrix} (1+i\sigma/\omega)^{-1} & & & \\ & 1 & & \\ & & 1 \end{pmatrix} \qquad \{\varepsilon,\mu\} \to \{\varepsilon,\mu\} \begin{pmatrix} (1+i\sigma/\omega)^{-1} & & & \\ & & 1+i\sigma/\omega & \\ & & & 1+i\sigma/\omega \end{pmatrix}$$

effective

PML = effective anisotropic "absorbing" ε , μ

PML Magic

$$\{\varepsilon,\mu\} \to \{\varepsilon,\mu\} \left(\begin{array}{c} (1+i\sigma/\omega)^{-1} \\ \\ 1+i\sigma/\omega \\ \\ \end{array} \right)$$

sprinkle the "magic PML dust" onto your materials, and they become absorbing without reflections...

$\longrightarrow x$	PML
yz variation	
yz variation irrelevant(?)	

Two questions:

• Review: How does PML work?

• When does PML *not* work?

x-varying media

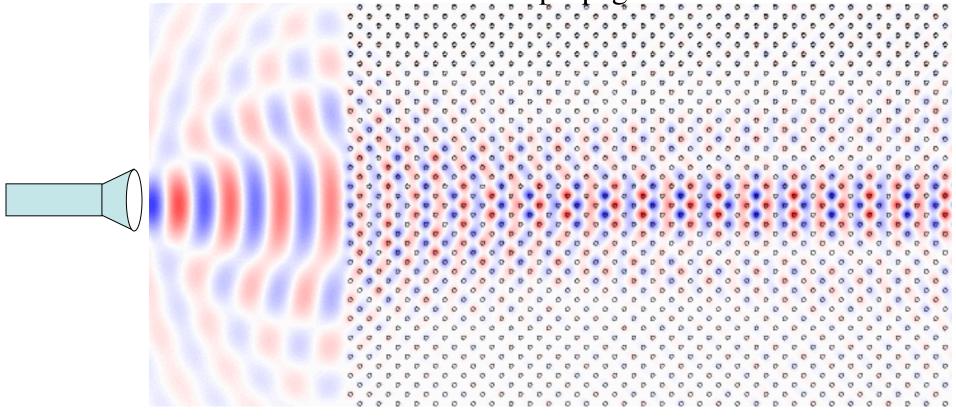
What happens if medium is varying in the x direction (i.e., \perp to PML)?

Who cares?

— If it's *x*-varying, surely propagating waves scatter anyway ... absorbers are irrelevant?

The magic of periodicity

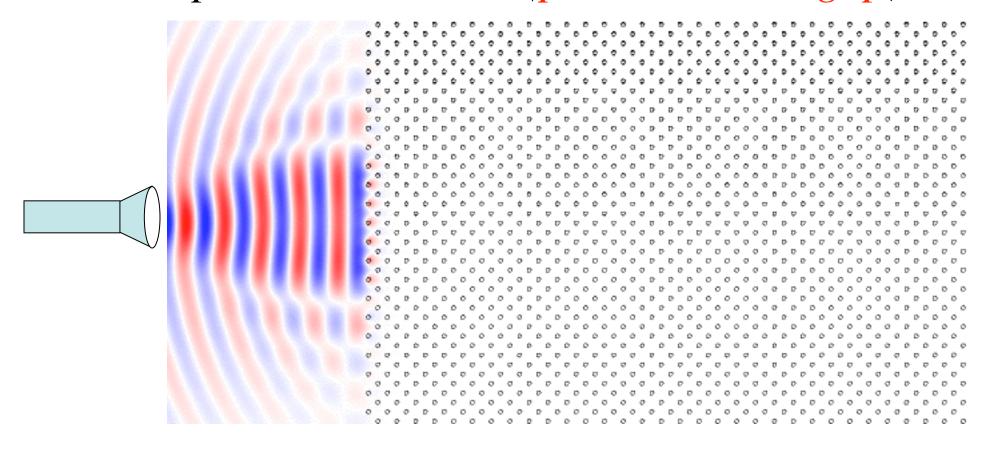
coherent propagation: Bloch wave



Light in a periodic medium (= photonic crystal) can propagate without scattering

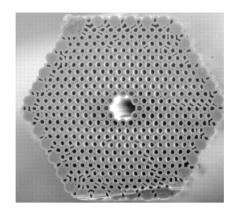
absorbing layer?

A slight change? Shrink λ by 20% an "optical insulator" (photonic bandgap)



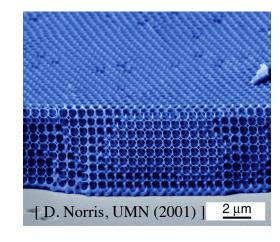
light cannot penetrate the structure at this wavelength! all of the scattering destructively interferes

Photonic crystals: Periodic EM media

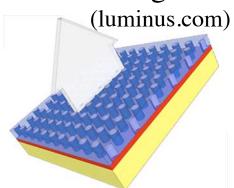


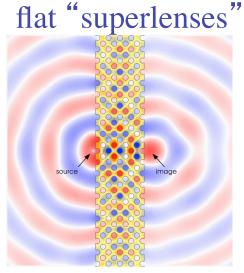
trapping/guiding light in vacuum [Cregan (1999)]

optical "insulators"

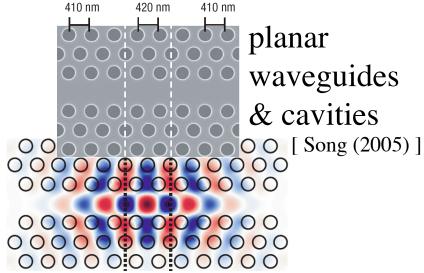


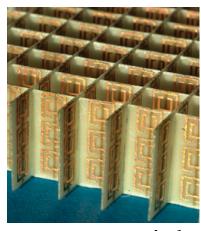
ultra-bright LEDs





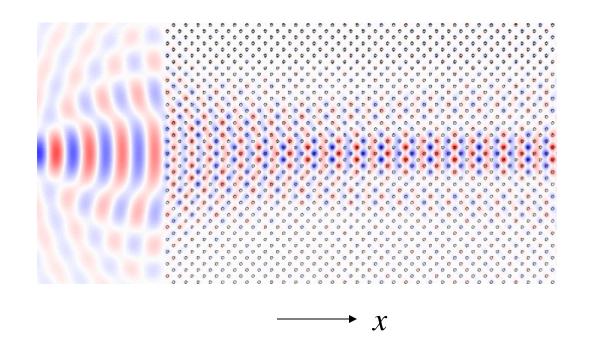
[Luo (2003)]





metamaterials [Smith (2004)]

Photonic-crystal PML?



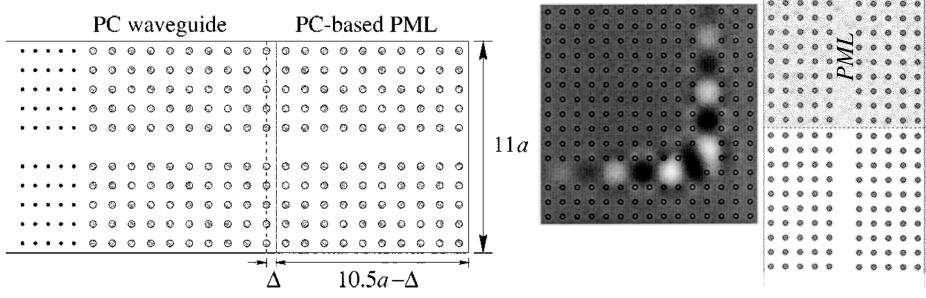
ε not even continuousin x direction,much less analytic!

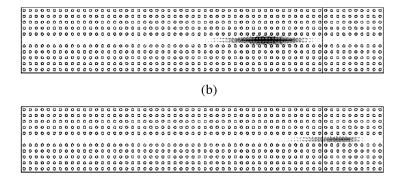
Analytic continuation of Maxwell's equations is hopeless

— no reason to think that PML technique should work

Photonic-crystal PMLs: Magic dust?

[Koshiba, Tsuji, & Sasaki (2001)]





... & several other authors ...

Low reflections claimed

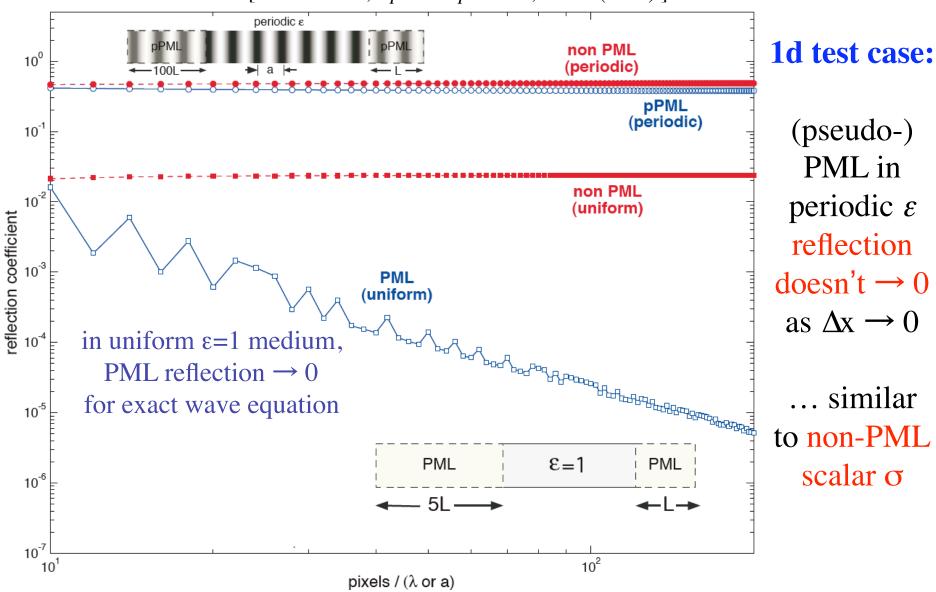
— is PML working?

[Kosmidou *et al* (2003)]

Something suspicious: very thick absorbers.

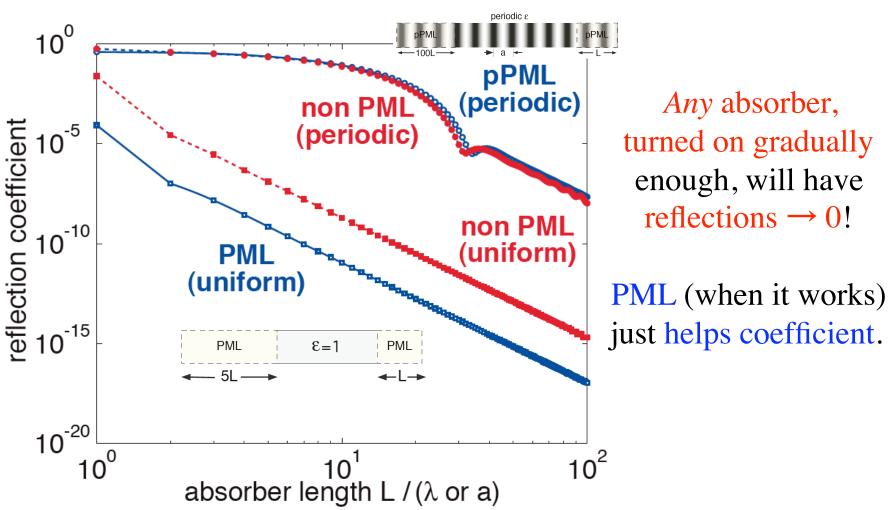
Failure of Photonic-crystal "pseudo-PML"

[Oskooi et al, Optics Express 16, 11376 (2008)]



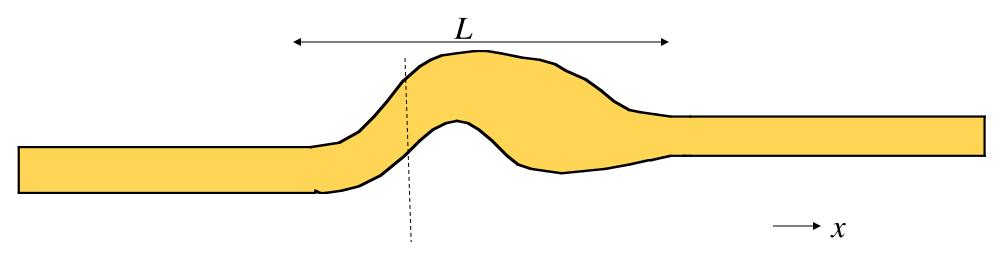
Redemption of the pseudo-PML: slow (adiabatic) absorption turn-on

[Oskooi et al, Optics Express 16, 11376 (2008)]



Understanding gradual change: Coupled-wave theory

[basic idea dates back to 1950s & earlier]



expand fields in eigenmodes ψ_n of each cross-section:

fields(x) =
$$\sum_{n} c_n(x) \psi_n(y,z) e^{-i\omega t + i \int_{-i\omega t}^{x} k_n(x') dx'} \rightarrow \text{ODEs for } c_n(x)$$

[non-trivial extension to periodic media: Johnson (2002)]

Coupled-mode equations

- Rescale u = x/L
- Parameterize structure by $s(u): [0,1] \rightarrow [0,1]$

$$\frac{dc_m}{du} = \sum_{n \neq m} s'(u) \frac{M_{nm}[s(u)]}{\Delta k_{nm}[s(u)]} e^{iL \int \Delta k_{nm}[s(u')] du'} c_n(u)$$
rate of matrix phase mismatch change element

Limit of large
$$L$$
 (gradual taper):
 $c_n(u) \rightarrow c_n(0)$ "adiabatic theorem"

Lowest-order reflection

- Rescale u = x/L
- Parameterize structure by $s(u): [0,1] \rightarrow [0,1]$

$$c_{\text{reflected}}(L) = c_{\text{incident}} \int_{0}^{1} s'(u) \frac{M_{nm}[s(u)]}{\Delta k_{nm}[s(u)]} e^{iL \int_{0}^{L} \Delta k_{nm}[s(u')] du'} du$$

say Δk real, definite-sign ... change variables $\xi(u) = \int_{-\infty}^{u} \Delta k_{nm} [s(u')] du'$

$$c_{\text{reflected}}(L) = c_{\text{incident}} \int_{0}^{\xi(1)} s'(u(\xi)) f(\xi) e^{iL\xi} d\xi$$

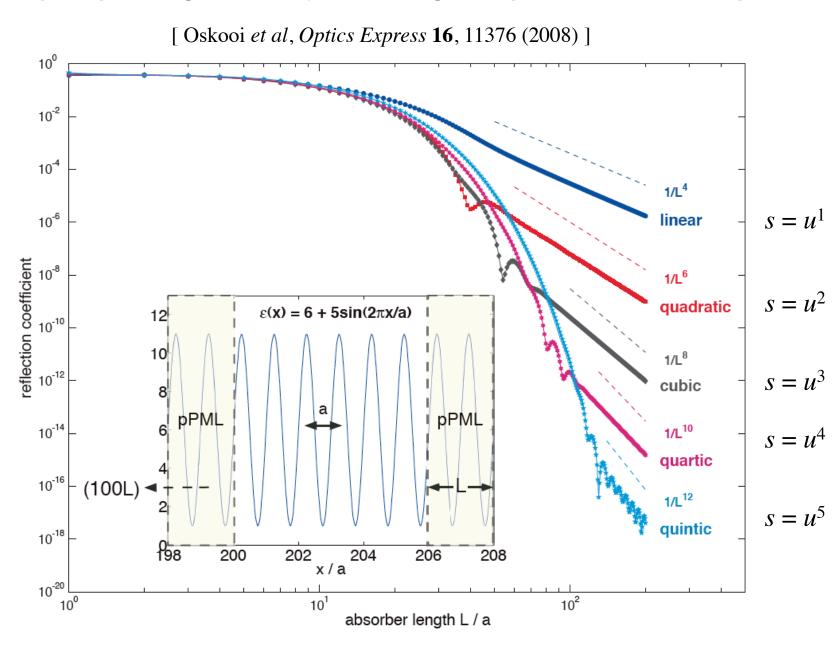
Fourier transform! Convergence $\rightarrow 0$ depends on smoothness of s'(u).

Back to absorption tapers

- Suppose absorption is: $\sigma(x) = \sigma_0 s(x/L)$, say $s(u) = u^d$
- Fix the round-trip reflection: $R_{\text{round-trip}} = e^{-\# L\sigma_0 \int_0^1 s(u) du} \Rightarrow \sigma_0 \sim \frac{1}{L}$

 \Rightarrow ... \Rightarrow transition reflections $\sim O(L^{-2d-2})$

Reflection vs. Absorber Thickness



Adiabatic Absorbers: Parting Thoughts

- Turning on σ gradually is the backup plan when PML fails.
- Even real PML turns on σ gradually to mitigate discretization.
- Several reports of "working" PML in the literature turn out to be just adiabaticity.
- As the absorber length L becomes longer, smoother σ is beneficial. (exponential convergence is possible for C_{∞} functions σ
 - ... but hard to get good constant factor)
- Finding the best adiabatic σ is a difficult problem
 - highly problem-dependent
 - but desirable to avoid thick absorbers, especially in 3d
 - min. L rapidly increase for "slow-light" (low v_g) systems

Two questions:

• Review: How does PML work?

• When does PML *not* work?

Starting point: A propagating wave

• Say we want to absorb wave traveling in +x direction in an x-invariant medium at a frequency $\omega > 0$.

fields ~
$$f(y,z)e^{i(kx-\omega t)}$$
 (usually, $k > 0$)

What if k < 0? i.e. $v_g = d\omega/dk > 0$ and $v_p = \omega/k < 0$?

PML: fields ~
$$f(y,z)e^{i(kx-\omega t)} \rightarrow f(y,z)e^{i(kx-\omega t)-\frac{k}{\omega}\sigma x}$$

Exponentially growing PML fields for $\sigma > 0!!$

Backward-Wave Modes?

$$v_g = d\omega/dk > 0$$
 and $v_p = \omega/k < 0$ (in *x*-invariant media)

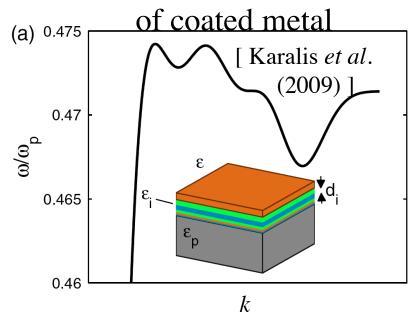
- Impossible in homogeneous media with $\varepsilon > 0$, $\mu > 0$
- Impossible in index-guided (total internal reflection) waveguides with $\varepsilon > 0$ [Bamberger & Bonnet (1990)]
- Possible in left-handed media with $\varepsilon < 0$, $\mu < 0$ for some ω just flip to $\sigma < 0$ in left-handed ω ranges [Cummer (2004); Dong et al. (2004)]
- Possible in certain waveguides confined by metals or photonic bandgaps...

Backward Waveguides

hollow metal tube with inhomogenous core

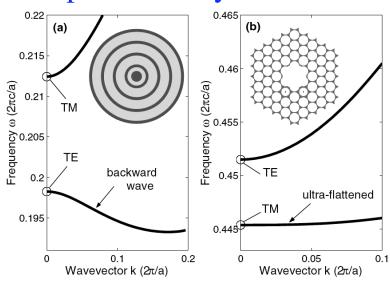
[Clarricoats & Waldron (1960)]

surface plasmons



metal

photonic-crystal fibers



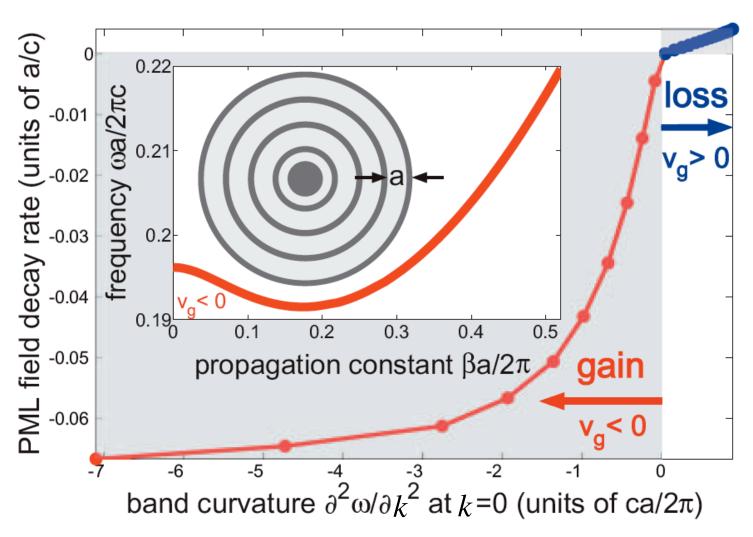
[Ibanescu *et al.* (2004)]

All have both signs of v_g at same ω — PML blows up for any sign of σ .

[Loh et al, (2009)]

Failure of Backward-Wave PML

[Loh et al, *PRE Rapid Comm.* **79**, 065601 (2009)]



How Can an Absorber Give Gain?

If PML is effectively an anisotropic *absorbing* material, how can *any* field pattern yield exponential growth?

• Answer, part I: it's not exclusively absorbing.

$$\{\varepsilon,\mu\} \to \{\varepsilon,\mu\}$$

$$1+i\sigma/\omega$$

$$1+i\sigma/\omega$$

$$1+\sigma/\omega$$

$$1+\sigma/\omega$$

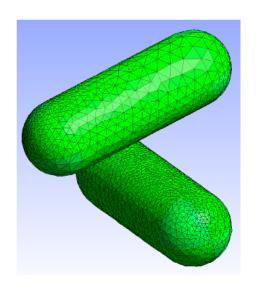
$$1+\sigma/\omega$$

$$1+\sigma/\omega$$

• Answer, part II: backward waves = mostly longitudinal fields a little-known identity:

$$v_g = v_p \begin{bmatrix} \text{transverse} & _ & \text{longitudinal} \\ \frac{\text{field energy}}{\text{total field energy}} & \frac{1}{\text{field energy}} \end{bmatrix}$$
 [Loh *et al*. (2009)]

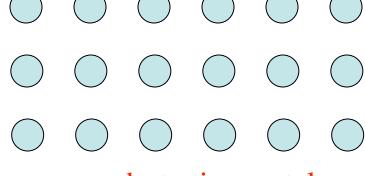
For Those of You Feeling Smug



Surface integral-equation methods (e.g. BEM) only discretize *interfaces* and treat ∞ space *analytically* — no need for PML!

... unless one has surfaces extending to ∞ ...

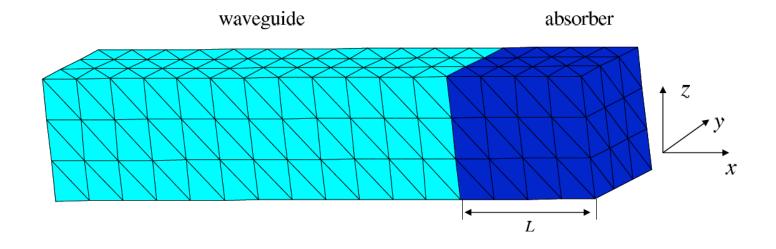
waveguide input/output ... e.g. waveguide bend...



worse, photonic crystals...

Truncating Integral Equations

[Lei Zhang, J. Lee, A. Oskooi, A. Hochman, J. White, S. G. Johnson (2010)]



- want an *adiabatic absorber* truncation turned on gradually
- must use homogeneous materials for BEM efficiency

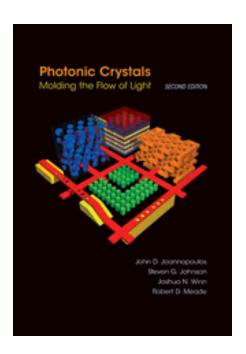
 \Rightarrow use an adiabatic *surface conductivity* (δ-function σ = jump condition at interface)

 $\sim 10^{-8}$ reflection with $L=10\lambda$

finis

PML is a wonderful tool, but not a panacea.

One fallback is an adiabatic absorber, but current situation here is still suboptimal.



Photonic Crystals book: http://jdj.mit.edu/book

Papers/preprints: http://math.mit.edu/~steveni

PML notes: http://math.mit.edu/~stevenj/notes