Computational Nanophotonics: Band Structures & Dispersion Relations

> Steven G. Johnson MIT Applied Mathematics

## Nanophotonics:

classical electromagnetic effects can be greatly altered by  $\lambda$ -scale structures especially with *many* interacting scatterers



[ D. Norris, UMN (2001) ]

easy to study numerically, theory practically exact, well-developed scalable 3d methods for arbitrary materials

#### Just solve this: Maxwell's equations



# Limits of validity at the nanoscale?

- Continuum material models (ε etc.) have generally proved very successful down to ~ few nm feature sizes
   [For metal features at < 20nm scale, some predictions of small nonlocal effects (ballistic transport), but this is mostly neglected ]
- Phenomena from resonant ~ nm features <<  $\lambda$  (e.g. spontaneous emission) usually can be incorporated perturbatively / semiclassically

(e.g. spontaneous emission ~ stochastic dipole source, spontaneous emission rate ~ local density of states ~ power radiated by dipole)

#### first, some perspective...

#### Development of Classical EM Computations

#### Analytical solutions 1

vacuum, single/double interfaces various electrostatic problems, ...



James Clerk Maxwell.



Lord Rayleigh

scattering from small particles, periodic multilayers (Bragg mirrors), ...

> ... & other problems with very high symmetry and/or separability and/or small parameters

Development of Classical EM Computations

 Analytical solutions

2) Semi-analytical solutions: series expansions



Gustav Mie (1908)

e.g. Mie scattering of light by a sphere

#### Also called *spectral methods*:

Expand solution in rapidly converging Fourier-like basis

• spectral integral-equation methods:

exactly solve homogeneous regions (Green's func.),& match boundary conditions via spectral basis(e.g. Fourier series, spherical harmonics)

• spectral PDE methods:

spectral basis for unknowns in inhomogeous space(e.g. Fourier series, Chebyshev polynomials, ...)& plug into PDE and solve for coefficients

Development of Classical EM Computations

 Analytical solutions

#### 2 Semi-analytical solutions & spectral methods



Expand solution in *rapidly converging Fourier-like basis* e.g. Mie scattering of light by a sphere

**Strength**: can converge *exponentially fast* 

- fast enough for hand calculation
- analytical insights, asymptotics, ...

Gustav Mie (1908) Limitation: fast ("spectral") convergence requires basis to be redesigned for each geometry (to account for any discontinuities/singularities ... complicated for complex geometries!)

(Or: brute-force Fourier series, polynomial convergence)

Development of Classical EM Computations

 Analytical solutions

- 2) Semi-analytical solutions & spectral methods
- 3 Brute force: generic grid/mesh

PDEs: discretize space into grid/mesh
— simple (low-degree polynomial) approximations in each pixel/element



←finite differences (or Fourier series)

& finite elements  $\rightarrow$ 

integral equations:

 boundary elements mesh surface unknowns coupled by Green's functions



# Computational EM: Three Axes of Comparison

- What *problem* is solved?
- eigenproblems: harmonic modes ~  $e^{-i\omega t}$  (**J** = 0)
- frequency-domain response: **E**, **H** from  $J(\mathbf{x})e^{-i\omega t}$
- time-domain response: **E**, **H** from J(x, t)
- PDE or integral equation?

- What *discretization*?
   infinitely many unknowns
   → finitely many unknowns
- finite differences (FD)
- finite elements (FEM) / boundary elements (BEM)
- spectral / Fourier

— ...

- dense linear solvers (LAPACK)
- sparse-direct methods
- iterative methods
- What *solution method*?

## A few lessons of history

- All approaches still in widespread use
  - brute force methods in 90%+ of papers, typically the first resort to see what happens in a new geometry
  - geometry-specific spectral methods still popular, especially when particular geometry of special interest
  - analytical techniques used less to solve new geometries than to prove theorems, treat small perturbations, etc.
- No single numerical method has "won" in general
  - each has strengths and weaknesses, e.g. tradeoff between simplicity/ generalizability and performance/scalability
  - very mature/standardized problems (e.g. capacitance extraction) use increasingly sophisticated methods (e.g. BEM), research fields (e.g. nanophotonics) tend to use simpler methods that are easier to modify (e.g. FDTD)

### Understanding Photonic Devices

[ Xu & Lipson, 2005 ]

[Notomi et al. (2005).]



Model the whole thing at once? Too hard to understand & design.

Break it up into pieces first: periodic regions, waveguides, cavities

### Building Blocks: Eigenmodes

• Want to know what solutions exist in different regions and how they can interact: look for time-harmonic modes ~  $e^{-i\omega t}$ 

$$\vec{\nabla} \times \vec{E} = -\mu \frac{\partial}{\partial t} \vec{H} \rightarrow i\omega \vec{H}$$
$$\vec{\nabla} \times \vec{H} = \varepsilon \frac{\partial}{\partial t} \vec{E} + \vec{J} \stackrel{0}{\rightarrow} -i\omega \varepsilon \vec{E}$$

 $\partial t$ 

First task: get rid of this mess



#### Electronic & Photonic Eigenproblems

Electronic

$$\left(-\frac{\hbar^2}{2m}\nabla^2 + V\right)\psi = E\psi$$

nonlinear eigenproblem (V depends on e density  $|\psi|^2$ )

(+ nasty quantum entanglement)

Photonic

$$\nabla \times \frac{1}{\varepsilon} \nabla \times \vec{H} = \left(\frac{\omega}{c}\right)^2 \vec{H}$$

simple linear eigenproblem (for linear materials with negligible dispersion)

—many well-known computational techniques

*Hermitian* = real  $E \& \omega$ , ... *Periodicity* = *Bloch's theorem*...

#### Building Blocks: Periodic Media



## Periodic Hermitian Eigenproblems

[ G. Floquet, "Sur les équations différentielles linéaries à coefficients périodiques," *Ann. École Norm. Sup.* **12**, 47–88 (1883). ] [ F. Bloch, "Über die quantenmechanik der electronen in kristallgittern," *Z. Physik* **52**, 555–600 (1928). ]

if eigen-operator is periodic, then Bloch-Floquet theorem applies:



Corollary 1: **k** is conserved, *i.e.* no scattering of Bloch wave Corollary 2:  $\vec{H}_{\vec{k}}$  given by finite unit cell,  $\circ \circ \circ$ so  $\omega$  are discrete  $\omega_n(\mathbf{k})$ 



#### A 2d Model System dielectric "atom" ε=12 (e.g. Si) square lattice, period *a* $\boldsymbol{a}$ a $\bullet E$ TM H

#### The magic of periodicity: Bloch waves



the light seems to form several *coherent beams* that propagate *without scattering* ... and almost *without diffraction* (*supercollimation*)

# A slight change? Shrink λ by 20% *an "optical insulator" (photonic bandgap)*



light cannot penetrate the structure at this wavelength! all of the scattering destructively interferes

## Solving the Maxwell Eigenproblem

*Finite* cell  $\rightarrow$  *discrete* eigenvalues  $\omega_n$ 

Want to solve for  $\omega_n(\mathbf{k})$ , & plot vs. "all" **k** for "all" *n*,



$$(\nabla + i\mathbf{k}) \times \frac{1}{\varepsilon} (\nabla + i\mathbf{k}) \times \mathbf{H}_n = \frac{\omega_n^2}{c^2} \mathbf{H}_n$$
  
constraint:  $(\nabla + i\mathbf{k}) \cdot \mathbf{H}_n = 0$ 

where field = 
$$\mathbf{H}_{n}(\mathbf{x}) e^{i(\mathbf{k}\cdot\mathbf{x} - \omega t)}$$

 $\mathbf{1} \quad \text{Limit range of } \mathbf{k} \text{: irreducible Brillouin zone}$ 

2 Limit degrees of freedom: expand **H** in finite basis

**3** Efficiently solve eigenproblem: iterative methods

#### Solving the Maxwell Eigenproblem: 1



2 Limit degrees of freedom: expand **H** in finite basis

3 Efficiently solve eigenproblem: iterative methods

## Solving the Maxwell Eigenproblem: 2a

1 Limit range of **k**: irreducible Brillouin zone  
2 Limit degrees of freedom: expand **H** in finite basis (*N*)  

$$|\mathbf{H}\rangle = \mathbf{H}(\mathbf{x}_t) = \sum_{m=1}^{N} h_m \mathbf{b}_m(\mathbf{x}_t) \quad \text{solve: } \hat{A} |\mathbf{H}\rangle = \omega^2 |\mathbf{H}\rangle$$
  
finite matrix problem:  $Ah = \omega^2 Bh$   
 $\langle \mathbf{f} | \mathbf{g} \rangle = \int \mathbf{f}^* \cdot \mathbf{g} \qquad A_{m\ell} = \langle \mathbf{b}_m | \hat{A} | \mathbf{b}_\ell \rangle \quad B_{m\ell} = \langle \mathbf{b}_m | \mathbf{b}_\ell \rangle$   
3 Efficiently solve eigenproblem: iterative methods

# Solving the Maxwell Eigenproblem: 2b

1) Limit range of  $\mathbf{k}$ : irreducible Brillouin zone

2 Limit degrees of freedom: expand **H** in finite basis — must satisfy constraint:  $(\nabla + i\mathbf{k}) \cdot \mathbf{H} = 0$ 

#### Planewave (FFT) basis

$$\mathbf{H}(\mathbf{x}_t) = \sum_{\mathbf{G}} \mathbf{H}_{\mathbf{G}} e^{i\mathbf{G}\cdot\mathbf{x}_t}$$

constraint:  $\mathbf{H}_{\mathbf{G}} \cdot (\mathbf{G} + \mathbf{k}) = 0$ 

uniform "grid," periodic boundaries, simple code, O(N log N)



[ figure: Peyrilloux *et al.*, *J. Lightwave Tech.* **21**, 536 (2003) ]

#### Finite-element basis

constraint, boundary conditions:

Nédélec elements

[ Nédélec, *Numerische Math*. **35**, 315 (1980) ]

nonuniform mesh, more arbitrary boundaries, complex code & mesh, O(N)

3 Efficiently solve eigenproblem: iterative methods

# Solving the Maxwell Eigenproblem: 3a

**1** Limit range of  $\mathbf{k}$ : irreducible Brillouin zone

2 Limit degrees of freedom: expand **H** in finite basis



Efficiently solve eigenproblem: iterative methods

$$Ah = \omega^2 Bh$$

Slow way: compute A & B, ask LAPACK for eigenvalues — requires  $O(N^2)$  storage,  $O(N^3)$  time

Faster way:

- start with *initial guess* eigenvector  $h_0$
- *iteratively* improve
- O(Np) storage, ~  $O(Np^2)$  time for p eigenvectors

(p smallest eigenvalues)

# Solving the Maxwell Eigenproblem: 3b

**1** Limit range of  $\mathbf{k}$ : irreducible Brillouin zone





Efficiently solve eigenproblem: iterative methods

$$Ah = \omega^2 Bh$$

Many iterative methods:

 Arnoldi, Lanczos, Davidson, Jacobi-Davidson, ..., Rayleigh-quotient minimization

# Solving the Maxwell Eigenproblem: 3c

**1** Limit range of  $\mathbf{k}$ : irreducible Brillouin zone





Efficiently solve eigenproblem: iterative methods

$$Ah = \omega^2 Bh$$

Many iterative methods:

Arnoldi, Lanczos, Davidson, Jacobi-Davidson, ...,
 Rayleigh-quotient minimization

for Hermitian matrices, smallest eigenvalue  $\omega_0$  minimizes:

variational / min–max theorem

$$\omega_0^2 = \min_h \frac{h^* A h}{h^* B h}$$

minimize by preconditioned conjugate-gradient (or...)



## Origin of the Band Gap

Hermitian eigenproblems:

solutions are orthogonal and satisfy a variational theorem

Electronic

• minimize kinetic + potential energy (e.g. "bonding" state) • minimize:  $\frac{\text{field oscillations}}{\text{field in high }\epsilon}$  $\omega^2 = \min_{\vec{E}} \frac{\int \left| \nabla \times \vec{E} \right|^2}{\int \epsilon \left| \vec{E} \right|^2} c^2$ 

 higher bands orthogonal to lower must oscillate (high kinetic) or be in low ε (high potential) (e.g. "anti-bonding" state)

#### Origin of Gap in 2d Model System



The Iteration Scheme is *Important* (minimizing function of 10<sup>4</sup>–10<sup>8</sup>+ variables!)

$$\omega_0^2 = \min_h \frac{h^* A h}{h^* B h} = f(h)$$

**Steepest-descent:** minimize  $(h + \alpha \nabla f)$  over  $\alpha$  ... repeat

Conjugate-gradient: minimize  $(h + \alpha d)$ - *d* is  $\nabla f$  + (stuff): *conjugate* to previous search dirs

Preconditioned steepest descent: minimize  $(h + \alpha d)$ -  $d = (approximate A^{-1}) \nabla f \sim Newton's method$ 

Preconditioned conjugate-gradient: minimize  $(h + \alpha d)$ - *d* is (approximate A<sup>-1</sup>) [ $\nabla f$  + (stuff)]





#### The ε-averaging is Important



[Farjadpour et al. (2006)]

#### Intentional "defects" are good

#### microcavities



#### waveguides ("wires")



## Intentional "defects" in 2d

(Same computation, with supercell = many primitive cells)



(boundary conditions ~ irrelevant for exponentially localized modes)

#### waveguides



#### to be continued...



#### Further reading:

*Photonic Crystals* book: <u>http://jdj.mit.edu/book</u>

Bloch-mode eigensolver: http://jdj.mit.edu/mpb