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classical electromagnetic effects can be
greatly altered by A-scale structures
especially with many interacting scatterers

Nanophotonics:

optical “insulators”
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easy to study numerically, theory practically exact,
well-developed scalable 3d methods for arbitrary materials



Just solve this: Maxwell’s equations

oB oD
Faraday: Vx E= — Ampere: Vx H = o +J
4 4
(nonzero\
requency)
\\\\\*ﬂ\\ V-D-

L . . , Gauss: P
constitutive equations (here, linear media): V:-B=0

D-¢E B=uH

/ \ magnetic permeability

...usually = y, at infrared/visible (A ~ ym)
electric permittivity

€. = € / €, = relative permittivity or dielectric constant

c>=1/¢
= n? (square of refractive index) 0t

¢, u depend on frequency (dispersion) theorists: often & = u, = 1
...negligible for transparent media in narrow bandwidth and/or .= &



Limits of validity at the
nanoscale?

e Continuum material models (¢ etc.) have generally proved

very successful down to ~ few nm feature sizes
| For metal features at < 20nm scale, some predictions of
small nonlocal effects (ballistic transport), but this is mostly neglected |

 Phenomena from resonant ~ nm features << A (e.g. spontaneous emission)
usually can be incorporated perturbatively / semiclassically

(e.g. spontaneous emission ~ stochastic dipole source,
spontaneous emission rate ~ local density of states
~ power radiated by dipole)



first, some perspective...



Development of Classical EM Computations

@ Analytical solutions

vacuum, single/double interfaces
various electrostatic problems, ...

scattering from small particles,
periodic multilayers (Bragg mirrors), ...

... & other problems with
very high symmetry
and/or separability

Lord Rayleigh and/or small parameters




Development of Classical EM Computations
@ Analytical solutions

@ Semi-analytical solutions: series expansions

e.g. Mie scattering of light by a sphere

Also called spectral methods:
Expand solution in rapidly converging Fourier-like basis

e spectral integral-equation methods:

exactly solve homogeneous regions (Green’s func.),

Gustav Mie & match boundary conditions via spectral basis
(1908) (e.g. Fourier series, spherical harmonics)
e spectral PDE methods:

spectral basis for unknowns in inhomogeous space
(e.g. Fourier series, Chebyshev polynomials, ...)
& plug into PDE and solve for coefficients



Development of Classical EM Computations
@ Analytical solutions

@ Semi-analytical solutions & spectral methods

Expand solution in rapidly converging Fourier-like basis
e.g. Mie scattering of light by a sphere

Strength: can converge exponentially fast

— fast enough for hand calculation
— analytical insights, asymptotics, ...

Gustav Mie Limitation: fast (“spectral””) convergence requires
(1908) basis to be redesigned for each geometry
(to account for any discontinuities/singularities
... complicated for complex geometries!)

(Or: brute-force Fourier series, polynomial convergence)



Development of Classical EM Computations
@ Analytical solutions

@ Semi-analytical solutions & spectral methods

@ Brute force: generic grid/mesh

integral equations:

— boundary elements mesh
surface unknowns coupled
by Green’s functions

PDEs: discretize space into grid/mesh
— simple (low-degree polynomial)
approximations in each pixel/element
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lose orders of magnitude in performance ... but re-usable code
$ computer time << $$$$ programmer time




Computational EM:
Three Axes of Comparison

— eigenproblems: harmonic modes ~ ¢ (J = 0)

e What problem is solved? — frequency-domain response: E, H from J(x)e~"
— time-domain response: E, H from J(x, 7)

— PDE or integral equation?

— finite differences (FD)
* What discretization?  — finite elements (FEM) / boundary elements (BEM)

infinitely many unknowns ~ — spectral / Fourier
— finitely many unknowns  — ...

— dense linear solvers (LAPACK)
e What solution method?! — sparse-direct methods
— iterative methods



A tew lessons of history

e All approaches still in widespread use

— brute force methods in 90%+ of papers, typically the first resort to
see what happens in a new geometry

— geometry-specific spectral methods still popular, especially when
particular geometry of special interest

— analytical techniques used less to solve new geometries than to prove
theorems, treat small perturbations, etc.

e No single numerical method has “won” 1n general

— each has strengths and weaknesses, e.g. tradeoff between simplicity/
generalizability and performance/scalability

— very mature/standardized problems (e.g. capacitance extraction) use
increasingly sophisticated methods (e.g. BEM), research fields (e.g.

nanophotonics) tend to use simpler methods that are easier to modity
(e.g. FDTD)



Understanding Photonic Devices

. [ Xu & Lipson, 2005 ]
[ Notomi et al. (2005). ]

420 nm [Mangan, et al.,
OFC 2004 PDP24 |

Model the whole thing at once? Too hard to understand & design.

Break it up into pieces first: periodic regions, waveguides, cavities



Building Blocks: Eigenmodes

* Want to know what solutions exist in different regions
and how they can interact: look for time-harmonic modes ~ ¢~

. 1 - . -
VxE = —/ﬂé,—H — 1wH First task:
J get r1d of this mess
- J - -0 .
VxH=ga—E+/e —IweE
[

1 _ . + constraint
Vx—VxH=wH V-H=0
E N

eigen-operator eigen-value eigen-field
(Hermitian for lossless/real &!)



Electronic & Photonic Eigenproblems

Electronic Photonic

—

2 2
1 .
——V2+V1/J=EI/J Vx—VxH=(£)H

2m £ C
nonlinear eigenproblem simple linear eigenproblem
(V depends on e density lyl?) (for linear materials

with negligible dispersion)
(+ nasty quantum entanglement)
—many well-known

computational techniques

Hermitian = real E & w, ... Periodicity = Bloch’s theorem...



Building Blocks: Periodic Media
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waveguides ,
translational

dlscrete perlodlclty photonic crystals Symmetry
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Periodic Hermitian Eigenproblems

[ G. Floquet, “Sur les équations différentielles linéaries a coefficients périodiques,” Ann. Ecole Norm. Sup. 12, 47-88 (1883). ]
[ F. Bloch, “Uber die quantenmechanik der electronen in kristallgittern,” Z. Physik 52, 555-600 (1928). ]

if eigen-operator 1s periodic, then Bloch-Floquet theorem applies:

i k-x—

can choose: H(f,t) =€ ( a)t)ﬁl_é (5(,:)

\

planewave . .
periodic “envelope

Corollary 1: Kk 1s conserved, i.e. no scattering of Bloch wave

Corollary 2: H ; given by finite unit cell, gigig@
so w are discrete w, (k) Q0O



Periodic

Bloch waves:

Medium

Band Diagram

Electronic and Photonic Crystals

atoms 1n diamond structure | dielectric spheres, diamond lattice

photon frequency

electron energy

wavevector

wavevector

weakly-interacting bosons
strongly interacting fermions . many design degrees of freedom



A 2d Model System

00000000 Q\dielectric “atom”
O 00000000 eness
00000000 square lattice
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Bloch waves
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The magic of periodicity
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the light seems to form several coherent beams

that propagate without scattering
... and almost without diffraction (supercollimation)



A slight change? Shrink A by 20%
an “optical insulator” (photonic bandgap)
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light cannot penetrate the structure at this wavelength!

all of the scattering destructively interferes



Solving the Maxwell Eigenproblem

2
Finite cell =¥ discrete eigenvalues o, (V + ik) X l(V + ik) xH = (Unz H
E C
Want to solve for (D”(k)’ constraint: (V + lk) -H o B 0

& plot vs. “all” k tor “all” n,
o ~
g;—%%& where field = H (x) eikx- o)

TTTTTTT

@ Limit range of K: irreducible Brillouin zone
@ Limit degrees of freedom: expand H in finite basis

@ Efficiently solve eigenproblem: iterative methods



Solving the Maxwell Eigenproblem: 1

@ Limit range of K: irreducible Brillouin zone

OO0OO  _Bloch’s theorem: solutions are periodic in kK

O OO0O0
O OO0O0
O OO0OO0O

first Brillouin zone
= minimum [K| “primitive cell”

/

irreducible Brillouin zone: reduced by symmetry

@ Limit degrees of freedom: expand H 1n finite basis

@ Efficiently solve eigenproblem: iterative methods



Solving the Maxwell Eigenproblem: 2a

@ Limit range of K: irreducible Brillouin zone

@ Limit degrees of freedom: expand H in finite basis (V)
N
1 2
H)=H(x)= Yh,b,(x) sone: AH)=w’H)
m=1
2
finite matrix problem: Ah=w"Bh

<f‘g>=ff*g Amf = <bm ‘A‘b€> Bm( = <bm‘b£>

@ Efficiently solve eigenproblem: iterative methods



Solving the Maxwell Eigenproblem: 2b

@ Limit range of K: irreducible Brillouin zone

@ Limit degrees of freedom: expand H in finite basis
— must satisfy constraint: (V +ik)-H=0

Planewave (FFT) basis Finite-element basis

) constraint, boundary conditions:
H _ H iGx, o
(x t) = € Nédélec elements

[ Nédélec, Numerische Math.
35,315 (1980) ]

constraint: HG : (G + k) =0

. . o . nonuniform mesh
uniform “grid,” periodic boundaries, . .
. aure: Prnlloux ofof more arbitrary boundaries,
simple code, O(N log N) ' "

J. Lightwave Tech.
o1 st (2005 ] complex code & mesh, O(N)

@ Efficiently solve eigenproblem: iterative methods



Solving the Maxwell Eigenproblem: 3a

@ Limit range of K: irreducible Brillouin zone
@ Limit degrees of freedom: expand H 1n finite basis

@ Efficiently solve eigenproblem: iterative methods

Ah = w’>Bh

Slow way: compute A & B, ask LAPACK for eigenvalues
— requires O(N?) storage, O(N?) time

Faster way:
— start with initial guess eigenvector h,
— iteratively improve
— O(Np) storage, ~ O(Np?) time for p eigenvectors

(p smallest eigenvalues)



Solving the Maxwell Eigenproblem: 3b

@ Limit range of K: irreducible Brillouin zone
@ Limit degrees of freedom: expand H 1n finite basis

@ Efficiently solve eigenproblem: iterative methods

Ah = w’>Bh

Many iterative methods:
— Arnoldi, Lanczos, Davidson, Jacobi-Davidson, ...,
Rayleigh-quotient minimization



Solving the Maxwell Eigenproblem: 3¢

@ Limit range of K: irreducible Brillouin zone
@ Limit degrees of freedom: expand H 1n finite basis

@ Efficiently solve eigenproblem: iterative methods

Ah = w’>Bh

Many iterative methods:
— Arnoldi, Lanczos, Davidson, Jacobi-Davidson, ...,
Rayleigh-quotient minimization

for Hermitian matrices, smallest eigenvalue w, minimizes:

variational 2 . h Ah minimize by preconditioned
/ min—max W, = Mmin-—; . .
h h Bh conjugate-gradient (or...)

theorem



Band Diagram
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Origin of the Band Gap

Hermitian eigenproblems:
solutions are orthogonal and satisty a variational theorem

Electronic Photonic

L L field oscillations
* MINIMI1ZEC * MIN1IM1zZce.

kinetic + potential energy field in high €
(e.g. “bonding” state) ﬂV =k

* higher bands orthogonal to lower —
must oscillate (high kinetic) or be in low ¢ (high potential)
(e.g. “anti-bonding” state)



Origin of Gap 1in 2d Model System
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The Iteration Scheme 1s Important
(minimizing function of 10*-108+ variables!)

. hAh
W, = min e = S ()

Steepest-descent: minimize (4 + a Vf) over a ... repeat

Conjugate-gradient: minimize (h + o d)
— d 1s Vf + (stuff): conjugate to previous search dirs

Preconditioned steepest descent: minimize (h + o d)
— d = (approximate A™") Vf ~ Newton’s method

Preconditioned conjugate-gradient: minimize (& + o d)
— d is (approximate A" [Vf + (stuff)]




The Iteration Scheme 1s Important
(minimizing function of ~40,000 variables)
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The Boundary Conditions are Tricky

\ E, 1s continuous

— K 1s discontinuous

(D, =€¢E, 1s continuous)

Use a tensor &:

_1\~1
[ Meade etal. (1993)]  \ <‘9 > ) E,|




The e-averaging 1s Important

100-
' correct averaging
1 0- *—___, backwards averaging changes order
f e of convergence
A
5 ey from Ax to Ax?
—
S 14 averaging ,
S reason in a nutshell:
‘H averaging
0.1 tensor averaging =~ “e—ae = smoothing ¢
i “e_o | = changing structure
... must pick smoothing
: St_
0.01 with zero 1%-order

10 100 perturbation
resolution (pixels/period)

[ Farjadpour et al. (2006) ]



Intentional “defects” are good

microcavities waveguides (“wires”)

a4 &

/’




Intentional “defects” 1in 2d

(Same computation, with supercell = many primitive cells)

waveguides

= my

:0: 0 ©
10: 0 ©
10! 0 ©
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microcavities

(boundary conditions ~ irrelevant
for exponentially localized modes)




to be continued. ..

Further reading:

Photonic Crystals book: http://idj.mit.edu/book

Bloch-mode eigensolver: http://jdj.mit.edu/mpb




