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Nanophotonics:
 classical electromagnetic effects can be

greatly altered by λ-scale structures


especially with many interacting scatterers 


[ D. Norris, UMN (2001) ]


optical “insulators”


trapping/guiding

light in vacuum


[ R. F. Cregan

 (1999) ]


[ Luo (2003) ]


flat “superlenses”


easy to study numerically, theory practically exact,

well-developed scalable 3d methods for arbitrary materials




Just solve this: Maxwell’s equations


∇ × E = − ∂B
∂t

Faraday:
 Ampere:
 ∇ ×H =
∂D
∂t

+ J

∇ ⋅D = ρ
∇ ⋅B = 0

Gauss:

constitutive equations (here, linear media):


D = εE B = µH

magnetic permeability

…usually ≈ µ0 at infrared/visible (λ ~ µm)


electric permittivity

εr = ε / ε0 = relative permittivity or dielectric constant

                = n2 (square of refractive index)


c2 = 1 / ε0 µ0


ε, µ depend on frequency (dispersion)

…negligible for transparent media in narrow bandwidth


theorists: often ε0 = µ0 = 1


        and/or εr = ε 


(nonzero

frequency)




Limits of validity at the 
nanoscale?


• Continuum material models (ε etc.) have generally proved

   very successful down to ~ few nm feature sizes

       [ For metal features at < 20nm scale, some predictions of

         small nonlocal effects (ballistic transport), but this is mostly neglected ]


• Phenomena from resonant ~ nm features << λ (e.g. spontaneous emission)

   usually can be incorporated perturbatively / semiclassically

 
 (e.g. spontaneous emission ~ stochastic dipole source,

        
         spontaneous emission rate ~ local density of states



 
 
 
         ~ power radiated by dipole)




first, some perspective…




Development of Classical EM Computations


1
 Analytical solutions


Lord Rayleigh


vacuum, single/double interfaces

various electrostatic problems, …


scattering from small particles,

periodic multilayers (Bragg mirrors), …


… & other problems with


very high symmetry


and/or separability


and/or small parameters




Development of Classical EM Computations

1
 Analytical solutions


2
 Semi-analytical solutions: series expansions


Gustav Mie

(1908)


e.g. Mie scattering of light by a sphere

Also called spectral methods:

Expand solution in rapidly converging Fourier-like basis

• spectral integral-equation methods:

      exactly solve homogeneous regions (Green’s func.),

      & match boundary conditions via spectral basis

      (e.g. Fourier series, spherical harmonics)

• spectral PDE methods:

      spectral basis for unknowns in inhomogeous space

      (e.g. Fourier series, Chebyshev polynomials, …)

      & plug into PDE and solve for coefficients




Development of Classical EM Computations

1
 Analytical solutions


2
 Semi-analytical solutions & spectral methods


Gustav Mie

(1908)


Expand solution in rapidly converging Fourier-like basis


Strength: can converge exponentially fast


— fast enough for hand calculation


— analytical insights, asymptotics, �…


Limitation: fast (“spectral”) convergence requires


basis to be redesigned for each geometry


(to account for any discontinuities/singularities


  … complicated for complex geometries!)


(Or: brute-force Fourier series, polynomial convergence)


e.g. Mie scattering of light by a sphere




Development of Classical EM Computations

1
 Analytical solutions


2
 Semi-analytical solutions & spectral methods

3
 Brute force: generic grid/mesh


←finite differences

  (or Fourier series)


     & finite elements→


PDEs: discretize space into grid/mesh

— simple (low-degree polynomial)

     approximations in each pixel/element


lose orders of magnitude in performance … but re-usable code

$ computer time  << $$$$ programmer time


integral equations:

— boundary elements mesh

     surface unknowns coupled

     by Green’s functions




Computational EM: �
Three Axes of Comparison


• What problem is solved?

— eigenproblems: harmonic modes ~ e–iωt    (J = 0)

— frequency-domain response: E, H from J(x)e–iωt

— time-domain response: E, H from J(x, t)

— PDE or integral equation?


• What discretization?

— finite differences (FD)

— finite elements (FEM) / boundary elements (BEM)

— spectral / Fourier

— …


• What solution method?

— dense linear solvers (LAPACK)

— sparse-direct methods

— iterative methods


infinitely many unknowns

→ finitely many unknowns




A few lessons of history

•  All approaches still in widespread use


–  brute force methods in 90%+ of papers, typically the first resort to 
see what happens in a new geometry


–  geometry-specific spectral methods still popular, especially when 
particular geometry of special interest


–  analytical techniques used less to solve new geometries than to prove 
theorems, treat small perturbations, etc.


•  No single numerical method has “won” in general

–  each has strengths and weaknesses, e.g. tradeoff between simplicity/

generalizability and performance/scalability

–  very mature/standardized problems (e.g. capacitance extraction) use 

increasingly sophisticated methods (e.g. BEM), research fields (e.g. 
nanophotonics) tend to use simpler methods that are easier to modify 
(e.g. FDTD) 




Understanding Photonic Devices


420 nm


[ Notomi et al. (2005). ]

[ Xu & Lipson, 2005 ]


10µm


[Mangan, et al., 

OFC 2004 PDP24 ]


Model the whole thing at once?  Too hard to understand & design.


Break it up into pieces first: periodic regions, waveguides, cavities


20 µm




Building Blocks: Eigenmodes

• Want to know what solutions exist in different regions

   and how they can interact: look for time-harmonic modes ~ e–iωt


 


∇ ×

E = −µ

∂
∂t

H → iω


H


∇ ×

H = ε

∂
∂t

E +

J → −iωε


E

0


First task:

get rid of this mess


 

∇ ×
1
ε
∇ ×

H =ω 2 H

eigen-operator

(Hermitian for lossless/real ε!)


eigen-value
 eigen-field


  ∇⋅
 
H = 0

+ constraint


1




Electronic & Photonic Eigenproblems


  

∇ ×
1
ε
∇ ×
 
H =

ω
c

 
 
 

 
 
 
2  
H 

Electronic
 Photonic


  

€ 

−

2

2m
∇2 +V

 

 
 

 

 
 ψ = Eψ

simple linear eigenproblem

(for linear materials


with negligible dispersion)


nonlinear eigenproblem

(V depends on e density |ψ|2)


(+ nasty quantum entanglement)

—many well-known

       computational techniques


Hermitian = real E & ω, … Periodicity = Bloch’s theorem…




Building Blocks: Periodic Media


homogeneous

media


2-D

periodic in
two directions

3-D

periodic in
three directions

1-D

periodic in
one direction

discrete periodicity: photonic crystals


waveguides


common thread:


translational

symmetry




Periodic Hermitian Eigenproblems

[ G. Floquet, “Sur les équations différentielles linéaries à coefficients périodiques,” Ann. École Norm. Sup. 12, 47–88 (1883). ]


[ F. Bloch, “Über die quantenmechanik der electronen in kristallgittern,” Z. Physik 52, 555–600 (1928). ]


if eigen-operator is periodic, then Bloch-Floquet theorem applies:


 


H (x,t) = ei


k ⋅ x−ω t( ) H k (

x)can choose:


periodic “envelope”

planewave


Corollary 1: k is conserved, i.e. no scattering of Bloch wave


Corollary 2:        given by finite unit cell,


 
so ω are discrete ωn(k)


 


H k



Electronic and Photonic Crystals

atoms in diamond structure
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dielectric spheres, diamond lattice


wavevector
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strongly interacting fermions

weakly-interacting bosons

… many design degrees of freedom




A 2d Model System


square lattice,

period a


dielectric “atom”

ε=12 (e.g. Si)


a


a


E


H

TM




The magic of periodicity: Bloch waves


the light seems to form several coherent beams

that propagate without scattering


… and almost without diffraction (supercollimation) 




A slight change? Shrink λ by 20%�
an “optical insulator” (photonic bandgap)


light cannot penetrate the structure at this wavelength!

all of the scattering destructively interferes 




Solving the Maxwell Eigenproblem


Hn(x) ei(k⋅x – ωt)
€ 

∇ + ik( ) × 1
ε
∇ + ik( ) ×Hn =

ωn
2

c 2
Hn

∇ + ik( ) ⋅Hn = 0

where field =


constraint:


1


Want to solve for ωn(k),

& plot vs. “all” k for “all” n, 


Finite cell  discrete eigenvalues ωn


Limit range of k: irreducible Brillouin zone


2
 Limit degrees of freedom: expand H in finite basis


3
 Efficiently solve eigenproblem: iterative methods




Solving the Maxwell Eigenproblem: 1

1
 Limit range of k: irreducible Brillouin zone


2
 Limit degrees of freedom: expand H in finite basis


3
 Efficiently solve eigenproblem: iterative methods


—Bloch’s theorem: solutions are periodic in k


kx


ky

first Brillouin zone


= minimum |k| “primitive cell”


€ 

2π
a

Γ


M


X


irreducible Brillouin zone: reduced by symmetry




Solving the Maxwell Eigenproblem: 2a

1
 Limit range of k: irreducible Brillouin zone


2
 Limit degrees of freedom: expand H in finite basis (N)


3
 Efficiently solve eigenproblem: iterative methods


H =H(xt ) = hmbm (x t )
m=1

N

∑ solve:
 ˆ A H =ω 2 H

Ah =ω 2Bh

  Am = bm
ˆ A b

   Bm = bm bf g = f * ⋅g∫

finite matrix problem:




Solving the Maxwell Eigenproblem: 2b

1
 Limit range of k: irreducible Brillouin zone


2
 Limit degrees of freedom: expand H in finite basis


3
 Efficiently solve eigenproblem: iterative methods


€ 

(∇ + ik) ⋅H = 0— must satisfy constraint:


Planewave (FFT) basis


H(x t ) = HGe
iG⋅xt

G
∑

€ 

HG ⋅ G + k( ) = 0constraint:


uniform “grid,” periodic boundaries,

simple code, O(N log N)


Finite-element basis

constraint, boundary conditions:


Nédélec elements

[ Nédélec, Numerische Math.


35, 315 (1980) ]


nonuniform mesh,

more arbitrary boundaries,


complex code & mesh, O(N)

[ figure: Peyrilloux et al.,


J. Lightwave Tech.

21, 536 (2003) ]




Solving the Maxwell Eigenproblem: 3a

1
 Limit range of k: irreducible Brillouin zone


2
 Limit degrees of freedom: expand H in finite basis


3
 Efficiently solve eigenproblem: iterative methods


Ah =ω 2Bh

Faster way:


— start with initial guess eigenvector h0


— iteratively improve


— O(Np) storage, ~ O(Np2) time for p eigenvectors


Slow way: compute A & B, ask LAPACK for eigenvalues


— requires O(N2) storage, O(N3) time


(p smallest eigenvalues)




Solving the Maxwell Eigenproblem: 3b

1
 Limit range of k: irreducible Brillouin zone


2
 Limit degrees of freedom: expand H in finite basis


3
 Efficiently solve eigenproblem: iterative methods


Ah =ω 2Bh
Many iterative methods:



— Arnoldi, Lanczos, Davidson, Jacobi-Davidson, …,


     Rayleigh-quotient minimization




Solving the Maxwell Eigenproblem: 3c

1
 Limit range of k: irreducible Brillouin zone


2
 Limit degrees of freedom: expand H in finite basis


3
 Efficiently solve eigenproblem: iterative methods


Ah =ω 2Bh
Many iterative methods:



— Arnoldi, Lanczos, Davidson, Jacobi-Davidson, …,


     Rayleigh-quotient minimization


for Hermitian matrices, smallest eigenvalue ω0 minimizes:


ω0
2 = min

h

h*Ah
h*Bh

minimize by preconditioned

 conjugate-gradient  (or…)


variational

/ min–max


theorem




Band Diagram of 2d Model System�
(radius 0.2a rods, ε=12)
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 
k gap for


n > ~1.75:1




Origin of the Band Gap

Hermitian eigenproblems: 

    solutions are orthogonal and satisfy a variational theorem


Electronic
 Photonic


• minimize 

    kinetic + potential energy



(e.g. “bonding” state)


• minimize:
 field oscillations

field in high ε


  

€ 

ω 2 =min 
E 

∇ ×
 
E 

2
∫

ε
 
E 

2
∫

c 2

• higher bands orthogonal to lower —

    must oscillate (high kinetic) or be in low ε (high potential)



 (e.g. “anti-bonding” state)




Origin of Gap in 2d Model System
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Ez
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gap for

n > ~1.75:1


lives in high ε


orthogonal: node in high ε




The Iteration Scheme is Important

(minimizing function of 104–108+ variables!)


Steepest-descent:  minimize (h + α ∇f) over α … repeat 


ω0
2 = min

h

h*Ah
h*Bh

= f (h)

Conjugate-gradient:  minimize (h + α d)


— d is ∇f + (stuff): conjugate to previous search dirs


Preconditioned steepest descent:  minimize (h + α d) 


— d = (approximate A-1) ∇f   ~  Newton’s method


Preconditioned conjugate-gradient:  minimize (h + α d)


— d is (approximate A-1) [∇f + (stuff)]




The Iteration Scheme is Important

(minimizing function of ~40,000 variables)


# iterations


%
 e

rro
r


preconditioned

conjugate-gradient
 no conjugate-gradient


no preconditioning




The Boundary Conditions are Tricky


ε?


E|| is continuous


E⊥ is discontinuous

(D⊥ = εE⊥ is continuous)


Use a tensor ε: 


€ 

ε

ε

ε−1
−1

 

 

 
 
 

 

 

 
 
 

E||


E⊥
[ Meade et al. (1993) ]




The ε-averaging is Important


resolution (pixels/period)


%
 e

rro
r


backwards averaging


tensor averaging


no averaging


correct averaging

changes order 

of convergence

from ∆x to ∆x2


reason in a nutshell:

averaging 


= smoothing ε

= changing structure


… must pick smoothing

with zero 1st-order


perturbation


[ Farjadpour et al. (2006) ]




Intentional “defects” are good


3D Photonic C rysta l with Defects

microcavities
 waveguides (“wires”)




Intentional “defects” in 2d

(Same computation, with supercell = many primitive cells)


(boundary conditions ~ irrelevant

  for exponentially localized modes)




to be continued…


Photonic Crystals book: http://jdj.mit.edu/book


Bloch-mode eigensolver: http://jdj.mit.edu/mpb


Further reading:



