
18.369 Problem Set 3
Due Friday, 13 March 2009.

Problem 1: Variational Theorem
Suppose that we have a generalized Hermitian eigen-
problem Âψ = λ B̂ψ on some Hilbert space ψ with
Â† = Â, B̂† = B̂, and B̂ positive-definite.

(a) Derive the variational theorem via the “quick
and dirty” method as in class: assuming a com-
plete basis of eigenstates ψn with eigenvalues
λn, show that λmin ≤ F{ψ} ≤ λmax for any
ψ 6= 0 and some functional F{ψ}, for the min-
imum and maximum eigenvalues (if any) λmin
and λmax. (For example, if B̂ = 1 then we
have an ordinary eigenproblem, and F{ψ} =
〈ψ, Âψ〉/〈ψ,ψ〉 as in class.)

(b) Without using completeness, show that extrema
of your functional F{ψ} only occur when ψ is
an eigenstate of the generalized eigenproblem.
Do this by the using property that, at an ex-
tremum ψ , the functional must be stationary:
that is, if we add any small δψ to ψ at an ex-
tremum, the change F{ψ +δψ}−F{ψ} is zero
to first order in δψ . You should be able to show
that this stationary condition implies that ψ sat-
isfies the generalized eigen-equation.

(c) Assume that we have a periodic structure ε and
therefore the electric field E can be chosen in
the form of a Bloch mode E = ei(k·x−ωt)Ek(x)
for some Bloch wavevector k, where Ek(x) is
periodic. Use the variational theorem for the
generalized eigenproblem (∇+ ik)×(∇+ ik)×
Ek = ω2

c2 Ek, to write an expression for the min-
imum eigenvalue ωmin(k) as the minimum of
some space of possible periodic field patterns
Ek. (I actually stated the result without proof in
the book.)

Problem 2: Guided modes in periodic
waveguides
In class, we showed by a variational proof that any
ε(y), in two dimensions, gives rise to at least one
guided mode whenever ε(y)−1 = ε

−1
lo − ∆(y) for∫

∆ > 0 and
∫
|∆| < ∞.1 At least, we showed it for

1As in class, the latter condition on ∆ will allow you to swap
limits and integrals for any integrand whose magnitude is bounded

the TE polarization (H in the ẑ direction). Now, you
will show the same thing much more generally, but
using the same basic technique.

(a) Let ε(x,y)−1 = 1−∆(x,y) be a periodic func-
tion ∆(x,y) = ∆(x + a,y), with

∫
|∆| < ∞ and∫ a

0
∫

∞

−∞
∆(x,y)dxdy > 0. Prove that at least one

TE guided mode exists, by choosing an ap-
propriate (simple!) trial function of the form
H(x,y) = u(x,y)eikxẑ . That is, show by the vari-
ational theorem that ω2 < c2k2 for the lowest-
frequency eigenmode. (It is sufficient to show
it for |k| ≤ π/a, by periodicity in k-space; for
|k|> π/a, the light line is not ω = c|k|.)

(b) Prove the same thing as in (a), but for the TM
polarization (E in the ẑ direction). Hint: you
will need to pick a trial function of the form
H(x,y) = [u(x,y)x̂+ v(x,y)ŷ]eikx where u and v
are some (simple!) functions such that ∇ ·H =
0.2

Problem 3: 2d Waveguide Modes

Consider the two-dimensional dielectric waveguide
of thickness h that we first introduced in class:

ε(y) =
{

εhi |y|< h/2
εlo |y| ≥ h/2 ,

where εhi > εlo. Look for solutions with the “TM”
polarization E = Ez(x,y)ẑe−iωt . The boundary con-
ditions are that Ez is continuous and ∂Ez/∂y (∼ Hx)
is continuous, and that we require the fields to be fi-
nite at x,y→±∞,

(a) Prove that we can set εlo = 1 without loss
of generality, by a change of variables in
Maxwell’s equations. In the subsequent sec-
tions, therefore, set εlo = 1 for simplicity.

(b) Find the guided-mode solutions Ez(x,y) =
eikxEk(y), where the corresponding eigenvalue
ω(k) < ck is below the light line.

above by some constant times |∆| (by Lebesgue’s dominated con-
vergence theorem).

2You might be tempted, for the TM polarization, to use the
E form of the variational theorem that you derived in problem 1,
since the proof in that case will be somewhat simpler: you can
just choose E(x,y) = u(x,y)eikxẑ and you will have ∇ · εE = 0
automatically. However, this will lead to an inequivalent condition∫
(ε−1) > 0 instead of

∫
∆ =

∫
ε−1

ε
> 0.
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(i) Show for the |y| < h/2 region the solu-
tions are of sine or cosine form, and that
for |y| > h/2 they are decaying exponen-
tials. (At this point, you can’t easily prove
that the arguments of the sines/cosines are
real, but that’s okay—you will be able to
rule out the possibility of imaginary argu-
ments below.)

(ii) Match boundary conditions (Ez and Hx
are continuous) at y = ±h/2 to obtain an
equation relating ω and k. You should
get a transcendental equation that you can-
not solve explicitly. However, you can
“solve” it graphically and learn a lot about
the solutions—in particular, you might
try plotting the left and right hand sides
of your equation (suitably arranged) as a

function of k⊥=
√

ω

c2
2
εhi− k2, so that you

have two curves and the solutions are the
intersections (your curves will be parame-
terized by k, but try plotting them for one
or two typical k).

(iii) From the graphical picture, derive an ex-
act expression for the number of guided
modes as a function of k. Show that there
is exactly one guided mode, with even
symmetry, as k→ 0, as we argued in class.

Problem 4: Numerical computations with
MPB
For this problem, you will gain some initial ex-
perience with the MPB numerical eigensolver de-
scribed in class, and which is available on Athena
in the meep locker. Refer to the class hand-
outs, and also to the online MPB documentation
at jdj.mit.edu/mpb/doc. For this problem, you will
study the simple 2d dielectric waveguide (with εhi =
12) that you analyzed analytically above, along with
some variations thereof—start with the sample MPB
input file (2dwaveguide.ctl) that was introduced in
class and is available on the course web page.

(a) Plot the TM (Ez) even modes as a function of
k, from k = 0 to a large enough k that you
get at least four modes. Compare where these
modes start being guided (go below the light
line) to your analytical prediction from problem
1. Show what happens to this “crossover point”
when you change the size of the computational
cell.

(b) Plot the fields of some guided modes on a log
scale, and verify that they are indeed expo-
nentially decaying away from the waveguide.
(What happens at the computational cell bound-
ary?)

(c) Modify the structure so that the waveguide has
ε = 2.25 instead of air on the y < −h/2 side.
Show that there is a low-ω cutoff for the TM
guided bands, and find the cutoff frequency.
(There is a general argument that an asymmet-
ric waveguide “cladding” of this sort leads to
low-frequency cutoffs.)

(d) Create the waveguide with the following profile:

ε(y) =

 2 0≤ y < h/2
0.8 −h/2 < y < 0

1 |y| ≥ h/2
.

Should this waveguide have a guided mode as
k → 0? Show numerical evidence to support
your conclusion (careful: as the mode becomes
less localized you will need to increase the com-
putational cell size).
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