
18.369 Problem Set 2

Due Friday, 27 February 2009.

Problem 1: Projection operators (easy)

The representation-theory handout gives a formula
for the projection operator from a state onto its com-
ponent that transforms as a particular representa-
tion. Prove the correctness of this formula (using the
Great Orthogonality Theorem).

Problem 2: Symmetries of a �eld in a
square metal box

In class, we considered a two-dimensional (xy) prob-
lem of light in an L × L square of air (ε = 1)
surrounded by perfectly conducting walls (in which
E = 0). We solved the case of H = Hz(x, y)ẑ and
saw solutions corresponding to �ve di�erent represen-
tations of the symmetry group (C4v).

(a) Solve for the eigenmodes of the other polariza-
tion: E = Ez(x, y)ẑ (you will need the E eigen-
problem from problem set 1), with the boundary
condition that Ez = 0 at the metal walls.

(b) Sketch and classify these solutions according to
the representations of C4v enumerated in class.
(Like in class, you will get some reducible acci-
dental degeneracies.)

Problem 3: Symmetries of a �eld in a
triangular metal box

Consider the two-dimensional solutions in a triangu-

lar perfect-metal box with side L. Don't try to solve
this analytically; instead, you will use symmetry to
sketch out what the possible solutions will look like
for both Ez and Hz polarizations.

(a) List the symmetry operations in the space group
(choose the origin at the center of the triangle so
that the space group is symmorphic), and break
them into conjugacy classes. (This group is tra-
ditionally called C3v). Verify that the group is

closed under composition (i.e. that the composi-
tion of two operations always gives another oper-
ation in the group) by giving the �multiplication
table� of the group (whose rows and columns are
group members and whose entries give their com-
position).

(b) Find the character table of C3v, using the rules
from the representation-theory handout.

(c) Give unitary representation matrices D for each
irreducible representation of C3v.

(d) Sketch possible ω 6= 0 Ez and Hz solutions that
would transform as these representations. What
representation should the lowest-ω mode (ex-
cluding ω = 0) of each polarization correspond
to?

(e) If there are any (non-accidental) degenerate
modes, show how given one of the modes we can
get the other orthogonal eigenfunction(s) (e.g.
in the square case we could get one from the 90◦

rotation of the other for a degenerate pair, but
the triangular structure is not symmetric under
90◦ rotations). Hint: use your representation
matrices.

Problem 4: Cylindrical symmetry

Suppose that we have a cylindrical metallic
waveguide�that is, a perfect metallic tube with ra-
dius R, which is uniform in the z direction. The
interior of the tube is simply air (ε = 1).

(a) This structure has continuous rotational symme-
try around the z axis, called the C∞ group.1

Find the irreducible representations of this group
(there are in�nitely many because it is an in�nite
group).

(b) For simplicity, consider the (Hermitian) scalar

wave equation −∇2ψ = ω2

c2 ψ with ψ|r=R = 0.
Show that, when we look for solutions ψ that
transform like one of the representations of the

1It also has an in�nite set of mirror planes containing the

z axis, but let's ignore these for now. If they are included, the

group is called C∞v.
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C∞ group from above, and have z dependence
eikz (from the translational symmetry), then we
obtain a Bessel equation (Google it if you've
forgotten Mr. Bessel). Write the solutions in
terms of Bessel functions, assuming that you are
given their zeros xm,n (i.e. Jm(xm,n) = 0 for
n = 1, 2, . . ., where Jm is the Bessel function of
the �rst kind...if you Google for �Bessel function
zeros� you can �nd them tabulated). Sketch the
dispersion relation ω(k) for a few bands.

(c) From the general orthogonality of Hermitian-
operator eigenfunctions, derive/prove an orthog-
onality integral for the Bessel functions. (No,
just looking one up on Wikipedia doesn't count.)

Problem 5: Conservation Laws

Suppose that we introduce a nonzero current
J(x)e−iωt into Maxwell's equations at a given fre-
quency ω, and we want to �nd the resulting time-
harmonic electric �eld E(x)e−iωt (i.e. we are only
looking for �elds that arise from the current, with
E→ 0 as |x| → ∞ if J is localized).

(a) Show that this results in a linear equation of the
form ÂE = b(x), where Â is some linear oper-
ator and b is some known right-hand side pro-
portional to the current density J.

(b) Prove that, if J transforms as some irreducible
representation of the space group then E (which
you can assume is a unique solution) does also.
(This is the analogue of the conservation in time

that we showed in class, except that now we
are proving it in the frequency domain. You
could prove it by Fourier-transforming the the-
orem from class, I suppose, but do not do so�
instead, prove it directly from the linear equation
here.)

(c) Formally, E = Â−1b, where Â−1 is related to the
Green's function of the system. What happens
if ω is one of the eigenfrequencies?
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