
18.369 Midterm Exam (Spring 2009)

March 31, 2010
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Figure 1: Projected band diagram of periodic multilayer filmfor
problem 1,without defects, for the TM polarization and a wavevec-
tor ky parallel to the layers. (Solid red line is the light line of air.)

You have two hours.There are three problems, each worth 30
points.

Problem 1: Projected bands

In figure 1 is shown the projected band diagram of a multilayerfilm
(a quarter-wave stack with perioda for alternating layers ofε = 13
andε = 1) for a wavevectorky parallel to the layers. This is for the
TM polarization (E perpendicular toky and parallel to the layers).
Now, suppose that we introduce a defect: a sequence of circular air
holes, with periodΛ = a, in the middle ofone of the high-index
layers, as shown in figure 2.

(a) Assume that the defect structure of figure 2 introduces a
guided mode. Sketch what you think is the band diagram for
the most likely guided mode, and also the field pattern of the
guided mode atky = 0. (If you think there might be more than
one guided mode, just sketch the lowest-ω mode.)

(b) Suppose you increase the periodΛ from one hole to the next.
For anyΛ,should it always be possible to create a guided mode
by adding air holes (possibly of a different shape), or is there
a maximumΛ beyond which air holes will never introduce
a guided mode? Explain your reasoning. (No equations are
needed, but a sketch or two might be nice.)

Problem 2: Perturbations

Suppose that we have a electromagnetic system with both a dielec-
tric permittivity ε > 0 and a magnetic permeabilityµ > 0. As you
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Figure 2: Multilayer film with defect layer (air holes) for prob-
lem 1.

found in homework, this is described by the Hermitiangeneralized
eigenproblem:

∇×
1
ε

∇×H =
ω2

c2 µH. (1)

Furthermore, however, supposeε(ω) and µ(ω) are (real, posi-
tive, smooth [with Taylor expansions]) functions of the frequency
ω (that is, a weakly dispersive medium). In this case, we have
a “nonlinear eigenproblem” (1), not simply a linear generalized
eigenproblem (it is nonlinear inω , not in H). But the operators
are still Hermitian etcetera at any givenω (as usual, assume thatH
goes to zero sufficiently far away, or is bounded in some otherway,
so that〈H,H〉 exists and boundary terms are irrelevant in integrals).

(a) Explain why, if equation (1) has a solutionω andH, thenω
must be real. (Note that you need not rederive things that were
proved in class, such as the fact that∇× is Hermitian. But you
cannot simply quote results we proved for linear eigenprob-
lems without clearly explaining why they apply here.)

(b) Suppose you are given a nondegenerate solutionω andH to
equation (1). If we changeε(ω) to ε(ω)+ ∆ε andµ(ω) to
µ(ω)+ ∆µ , find the first-order correction (in∆ε and∆µ) to
ω . Explain why any smooth frequency dependence of∆ε and
∆µ is irrelevant to this first-order calculation; all we need to
know are∆ε(ω) and∆µ(ω). (The frequency dependence ofε
andµ is not irrelevant: be careful not to discard any first-order
terms!)
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Figure 3: Left: symmetry operations (C3v) for the triangle (three
mirror planes and 3-fold rotations). Right: symmetry operations
(C3v) for the hexagon (six mirror planes and 6-fold rotations).

Problem 3: Symmetries

The symmetry operations for the regular hexagon (symmetry group
C6v, from class and the 2007 midterm) and the equilateral triangle
(symmetry groupC3v, from problem set 2) are shown in figure 3.
The corresponding character tables are:

C6v E 2C6 2C3 C2 3σ 3σ ′

Γ1 1 1 1 1 1 1
Γ2 1 1 1 1 −1 −1
Γ3 1 −1 1 −1 1 −1
Γ4 1 −1 1 −1 −1 1
Γ5 2 −1 −1 2 0 0
Γ6 2 1 −1 −2 0 0

C3v E 2C3 3σ
R1 1 1 1
R2 1 1 -1
R3 2 -1 0

(where we have called theC6v representationsΓ1,...,6 and theC3v

representationsR1,...,6 to distinguish them).

(a) Suppose you start with an air-filled hexagonal metallic-walled
cavity, in two dimensions, and compute eigenmodes corre-
sponding to all of the six irreducible representations (Γ1,...,6),
with no accidental degeneracies. Now we put a concentric
triangle of some perturbation∆ε inside the hexagon, where
the triangle is concentric with the outer hexagon and the bot-
tom edge of the triangle is parallel with the bottom edge of
the hexagon. For each ofΓ1,...,6, describe whether eigenfunc-
tions of that representation in the original structure correspond
in the perturbed structure to partner functions of reducible or
irreducible representations of the perturbed structure—and in
the latter case, which ofR1,...,3 they correspond to in the new
symmetry groupC3v.

(b) Suppose you are doing a Meep simulation of the fields in this
hexagonal cavity with the triangular inclusion. You want to
put in current sourcesJ that excite modes of each of the irre-
ducible representationsR1,...,3 one at a time. That is, first you
want to put in aJ that excites onlyR1 to study theR1 modes
(in response to a short pulse), then a current for onlyR2, then a
current for onlyR3. Explicitly give examples of such currents.
You need give only the spatial patternJ(x). (Note that the
simplest possible current is a point dipole, whereJ is a delta

function at some point. I would suggest using one or more
point dipoles; be sure to indicate both their locations and the
orientation ofJ at each dipole location. A drawn picture is
sufficient.)

(c) Suppose you are given a field pattern of an eigenmode of the
hexagonal cavity with the triangular∆ε. You know that the
field pattern must be a partner function of an irreducible rep-
resentation, butyou’re not sure which one. Explain how (and
why!) you can determine which irreducible representation the
field is by evaluating the field at only six points in space, as
long as the field does not happen to be zero at those points.
(Hint: start with the projection operator on the field at all
points, and then show how you can simplify the problem.)
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