18.369 Midterm Exam (Spring 2009)

March 31, 2010
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Figure 1: Projected band diagram of periodic multilayer ffom
problem 1 without defects, for the TM polarization and a wavevec-
tor ky parallel to the layers. (Solid red line is the light line of ai

—>Yy ®E
\ |
al
\ |
N
[h—

[O © O O O O O O]
\ |
e=1
\ £=13 |

Figure 2: Multilayer film with defect layer (air holes) for qd-

lem 1.

You have two hoursT here arethree problems, each worth 30
points.

found in homework, this is described by the Hermitggneralized

eigenproblem:

Problem 1: Projected bands

In figure 1 is shown the projected band diagram of a multiléirer

(a quarter-wave stack with periador alternating layers of = 13 £, thermore. however Supposew)
ande = 1) for a wavevectoky parallel to the layers. This is for they;, o ’ i
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and u(w) are (real, posi-
smooth [with Taylor expansions]) functions of thequency

TM polarization € perpendicular t&, and parallel to the layers). (that is, a weakly dispersive medium). In this case, we ha

Now, suppose that we introduce a defect: a sequence of airail
holes, with period\ = a, in the middle ofone of the high-index
layers, as shown in figure 2.

(a) Assume that the defect structure of figure 2 introduced
guided mode. Sketch what you think is the band diagram &
the most likely guided mode, and also the field pattern of the

a “nonlinear eigenproblem” (1), not simply a linear genieed
eigenproblem (it is nonlinear iw, not in H). But the operators
are still Hermitian etcetera at any given(as usual, assume thdt
Qes to zero sufficiently far away, or is bounded in some otlagt
that(H,H) exists and boundary terms are irrelevant in integral:

guided mode ak, = 0. (If you think there might be more than (&) Explain why, if equation (1) has a solutionandH, thenw

one guided mode, just sketch the lowestnode.)

(b) Suppose you increase the perisdrom one hole to the next.
For anyA should it always be possible to create a guided mode
by adding air holes (possibly of a different shape), or is¢he

a maximumA beyond which air holes will never introduce b
a guided mode? Explain your reasoning. (No equations aq'e>

needed, but a sketch or two might be nice.)

Problem 2: Perturbations

Suppose that we have a electromagnetic system with bothexdie
tric permittivity € > 0 and a magnetic permeability> 0. As you

must be real. (Note that you need not rederive things thag w
proved in class, such as the fact thiat is Hermitian. But you
cannot simply quote results we proved for linear eigenpro
lems without clearly explaining why they apply here.)

Suppose you are given a hondegenerate soluti@amdH to
equation (1). If we change(w) to &(w) + Ag and p(w) to
u(w) + Ay, find the first-order correction (iAe andAy) to
w. Explain why any smooth frequency dependenca®énd
Ap is irrelevant to this first-order calculation; all we need t
know arefAe(w) andAu(w). (The frequency dependencesof
andy is not irrelevant: be careful not to discard any first-orde
terms!)



%3

/

Figure 3: Left: symmetry operation€4,) for the triangle (three
mirror planes and 3-fold rotations). Right: symmetry opierss
(Csy) for the hexagon (six mirror planes and 6-fold rotations).

Problem 3: Symmetries

The symmetry operations for the regular hexagon (symmetnyg

(©)

Cev, from class and the 2007 midterm) and the equilateral tl&ang

(symmetry groupCsy, from problem set 2) are shown in figure 3.

The corresponding character tables are:

|C5V|E|2C6|2C3|C2|3O'|3O'/|

1] 12 ] 111 1] 1
1] 1 | 1 |1 |-1] -1
s | 1] —1] 1 | -1 1 | -1
o | 1] —1] 1 |-1|-1] 1
s 2| 1] 1| 2 0] 0
e | 2| 1 | -1|-2] 0] 0

| Cay | E | 2C3 | 30 |
Rl |1 1 1
R, | 1] 1 | -1
Rs | 2] -1 ] 0

(where we have called ti&, representations; g and theCs,
representationB; g to distinguish them).

(a) Suppose you start with an air-filled hexagonal metalidted

cavity, in two dimensions, and compute eigenmodes corre-

sponding to all of the six irreducible representationsg (e),

with no accidental degeneracies. Now we put a concentric

triangle of some perturbatiode inside the hexagon, where

the triangle is concentric with the outer hexagon and the bot
tom edge of the triangle is parallel with the bottom edge of

the hexagon. For each bf, ¢, describe whether eigenfunc-

tions of that representation in the original structure espond
in the perturbed structure to partner functions of redecil
irreducible representations of the perturbed structuned-ia

the latter case, which &% 3 they correspond to in the new

symmetry grousy.

(b)

Suppose you are doing a Meep simulation of the fields & thi

hexagonal cavity with the triangular inclusion. You want to

put in current sourcedthat excite modes of each of the irre-
3 one at atime. That is, first you

ducible representatiorn®;
want to put in al that excites onlyR; to study theR; modes
(inresponse to a short pulse), then a current for &alythen a

current for onlyRsz. Explicitly give examples of such currents.

You need give only the spatial pattediix). (Note that the
simplest possible current is a point dipole, whéris a delta

function at some point. | would suggest using one or mo
point dipoles; be sure to indicate both their locations dred t
orientation ofJ at each dipole location. A drawn picture is
sufficient.)

Suppose you are given a field pattern of an eigenmode of
hexagonal cavity with the triangul@e. You know that the

field pattern must be a partner function of an irreducible re
resentation, bugou're not sure which one. Explain how (anc
why!) you can determine which irreducible representatien t
field is by evaluating the field at only six points in space, :
long as the field does not happen to be zero at those poi
(Hint: start with the projection operator on the field at a
points, and then show how you can simplify the problem.)



