
18.369 Problem Set 4

Due Friday, 28 March 2008.

Problem 1: Perturbation theory

(a) In class, we derived the 1st-order correction in
the eigenvalue for an ordinary Hermitian eigen-
problem Ôψ = λψ for a small perturbation
∆Ô. Now, do the same thing for ageneralized
Hermitian eigenproblem̂Aψ = λB̂ψ.

(i) That is, assume we have the solution
Â(0)ψ(0) = λ(0)B̂(0)ψ(0) to an unper-
turbed system (wherêA(0) and B̂(0) are
Hermitian, andB̂(0) is positive-definite)
and find the first-order correctionλ(1)

when we changeboth Â andB̂ by small
amounts∆Â and∆B̂. You may assume
thatλ(0) is non-degenerate, for simplicity.

(ii) Now, apply this solution to the generalized
eigenproblem∇ × ∇ × E = ω2

c2 εE for a
small change∆ε, and show that the first-
order correction∆ω is the same as the one
derived in class using theH eigenprob-
lem.

(b) Recall the problem of the modes in anL × L
metal box that we solved in class for theHz

(TE) polarization, and which you solved in
problem set 2 for theEz (TM) polarization.
Originally, this box was filled with air (ε = 1).
Now, suppose that we increaseε by some small
constant∆ε in the lower-leftL

2 × L
2 corner of

the box. What is the first-order∆ω for the first
four (lowestω) modes of the TM polarization?
What happens to the degenerate modes (be care-
ful, remember to diagonalize the perturbation
explicitly or via symmetry)?

(c) In class, we calculated the band gap∆ω that
appeared in a uniform (1d) materialε(x) = ε1
when half of the unit cella was changed to
ε1 − ∆ε for some small∆ε, by using per-
turbation theory. In particular, we derived the
gap between the first two bands that appears at
k = π/a, the edge of the Brillouin zone.

(i) Now, you should compute the gap that ap-
pears between band 2 and band 3 atk = 0,

thecenterof the Brillouin zone, to first or-
der. However, do it more generally: as-
sume that theε1 region has thicknessd1

and that theε1 − ∆ε region has thickness
a − d1, repeated with perioda, and com-
pute∆ω as a function ofd1.

(ii) At what d1 values does this gap atk = 0
disappear (∆ω = 0)? What is∆ω for the
quarter-wave stack thicknesses?

Problem 2: Band gaps in MPB

Consider the 1d periodic structure consisting of two
alternating layers:ε1 = 12 and ε2 = 1, with
thicknessesd1 andd2 = a − d1, respectively. To
help you with this, I’ve created a sample input file
bandgap1d.ctlthat is posted on the course web page.

(a) Using MPB, compute and plot the fractional
TM gap size (of thefirst gap, i.e lowestω) vs.
d1 for d1 ranging from0 to a. Whatd1 gives
the largest gap? Compare to the “quarter-wave”
thicknessesd1,2 = a

√
ε2,1/[

√
ε1 +

√
ε2].

(b) Given the optimal parameters above, what
would be the physical thicknesses in order for
the mid-gap vacuum wavelength to beλ =
2πc/ω = 1.55µm? (This is the wavelength
used for most optical telecommunications.)

(c) Plot the 1d TM band diagram for this structure,
with d1 given by the quarter wave thickness,
showing the first five gaps. Also compute it for
d1 = 0.12345 (which I just chose randomly),
and superimpose the two plots (plot the quarter-
wave bands as solid lines and the other bands as
dashed). What special features does the quarter-
wave band diagram have?

Problem 3: Bands and supercells

Note: this problem doesnot require you to do any
numerical calculations in MPB etcetera—it actually
appeared on the spring 2007 midterm.

Calvin Q. Luss, a Harvard student, posts to the
MPB mailing list that he has discovered a bug in
MPB. He writes:

I’m getting ready to do a 2d-crystal
calculation, but first I wanted to do a 1d
crystal as a test case since I know the
band diagram analytically for that (from
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Figure 1: Two MPB unit cells for the band struc-
ture of a 1d-periodic quarter-wave stack: (i) a 1d
a×no-size unit cell (ii) a 2da× a unit cell.

Yeh’s book). I used the quarter-wave
stack shown in fig. 1(i), with a 1d compu-
tational cell ofa×no-size×no-size,
and plotted the TM band structureω(kx)
(for k = (kx, 0, 0) with kx from 0 to 0.5
in MPB units, i.e. from0 to π/a)—
everything works fine! Then I do the same
calculation but with a computational cell
of a×a×no-size, as shown in fig. 1(ii),
and the result is wrong! I get all sorts
of extra bands at bogus frequencies; why
doesn’t the result match the 1d computa-
tion, since the structure hasn’t changed? I
think it must be a bug; you MIT people ob-
viously don’t know what you’re doing.

Sketch out the plots that Calvin got from his two cal-
culations, and explain why MPB is correctly answer-
ing exactly the question that he posed. Sketch at least
4 bands in the 1d calculation, and at least 6 bands in
the 2d calculation (not counting degeneracies), and
label any bands that are doubly (or more?) degener-
ate.

(You can use the fact that theε contrast in this case
is only 10%—the structure isnearlyhomogeneous—
to help you sketch out the bands more quantitatively.
But no need to betoo quantitative, however: you
don’t need to use perturbation theory or anything like
that; a reasonable guess is sufficient.)

Problem 4: Defect modes in MPB

In MPB, you will create a (TM polarized) defect
mode by increasing the dielectric constant of a sin-
gle layer by∆ε, pulling a state down into the gap.
The periodic structure will be the same as the one
from problem 2, with the quarter-wave thickness
d1 = 1/(1 +

√
12). To help you with this, I’ve cre-

ated a sample input filedefect1d.ctlthat is posted on
the course web page.

(a) When there isno defect (∆ε), plot out the band
diagramω(k) for the N = 5 supercell, and
show that it corresponds to the band diagram of
problem 2 “folded” as expected.

(b) Create a defect mode (a mode that lies in the
band gap of the periodic structure) by increas-
ing theε of a singleε1 layer by∆ε = 1, and
plot theEz field pattern. Do the same thing
by increasing a singleε2 layer. Which mode is
even/odd around the mirror plane of the defect?
Why?

(c) Gradually increase theε of a singleε2 layer, and
plot the defectωas a function of∆ε as the fre-
quency sweeps across the gap. At what∆ε do
you get two defect modes in the gap? Plot the
Ez of the second defect mode. (Be careful to
increase the size of the supercell for modes near
the edge of the gap, which are only weakly lo-
calized.)

(d) The mode must decay exponentially far from
the defect (multiplied by anei π

a
x sign os-

cillation and the periodic Bloch envelope, of
course). From theEz field computed by MPB,
extract this asympotic exponential decay rate
(i.e. κ if the field decays∼ e−κx) and plot this
rate as a function ofω, for the first defect mode,
as you increaseε2 as above (varyε2 so thatω
goes from the top of the gap to the bottom).
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