18.369 Problem Set 3 Solutions

Problem 1: Variational Theorem

(a) ChooseF{y} = (v, Ay)/ (1, By). Suppose we have eigenstateswith eigenvalues.,, and recall
from pset 1 that they can be chosen orthogonal, With, Bq/)m> = 6p,m and thus<¢n,/i1/)m> =
Am0n,m. Forthis part, we assume the eigenstates are completey gocam be written) = >~ ¢, 9,
for some coefficients,,. Then,

Zn ,m Cncm <¢n, Awm> _ Zn |Cn|2/\n
ancncm <¢n,B’¢)m> Zn |Cn|2 .

Assumingy # 0, then(y, Bip) = >, len|? > 0, and this is precisely a weighted average ofxh&.
Therefore, as in class, it lies between the minimum and maxirk,’s (if any).

F{y} =

(b) LetuswriteF'{y + 6} — F{v}, dropping any terms of second order or highefin

B (W, AY) + (59, AY) + (0, Ady) (i, Ad) 2
Flokov) = ey = (¥, BY) + (00, BY) + (1, Boy) <w,Bw>+O(5)
(69, Ap) (v, Ay) (3¢, By)

B w> (o0, (Ay - F{v}By))

where “c.c” denotes the complex conjugate of the bracketpression': Here, we have used the fact
that u}H; =212 4 0(?) in order to move thésy, By) from the denominator to the numerator.
Now, in order for this to be true foall variationsd, which must be the case at an extremum, the
parenthesized expression -) must be zerd.But this parenthesized expression is just the eigenequa-
tion Ay — A\By) = 0 where\ = F{«} is just a number. This is only satisfied wheris an eigenstate

andJ is the corresponding generalized eigenvalue. Q.E.D.

+[c.8 + O(6?)

+[c.d + O(6?)

(c) Forthe the electric field, we saw in pset 1 that we obtaiereegalized eigenproblem with = Vx Vx
and B = ¢, with the constraint thal’ - e¢E = 0 (the absence of free charge). For the Bloch mode
E = ¢/(kx—“E, (x), we simply replacd’ with V+ik to get the eigenequation féll.. Furthermore,
sinceV x is Hermitian, we writg E|A|E) as [ |V x E|?. Thus, our variational theorem becomes:
H];m UV +ik) x By
k 2
(V +ik) - B =0 J e By
where the integration is over the unit cell.

“min (k) _
c? o

)

Problem 2: Guided modesin periodic waveguides

In both parts of this problem, we need to prove that the \iariat quotient(H, ©, H) / (H, H) < k2 for
some trial function H), or equivalently that

// (1-A V+ik)><Hk|2dxdy—k2// |Hy|* dz dy < 0
0 —00

for the trial Bloch envelop#l, = He %% k = kx,ands~! =1 — A.

INote that in writing(st| A|+p) = (| A|8) ", we have used the fact thatis Hermitian, and similarly foi3.
2At first sight, since we are adding the complex conjugate,ightiseem that only the real part of the -] quantity must be zero.
However, if the imaginary part were nonzero, then we couftlge) — 5 and get a non-zero quantity.



(@) We will chooseu(z,y) = e~ 1¥I/L for someL > 0, exactly as in class—that is, it is the simplest
conceivable periodic function of, a constant. Thusf [u|? = 2a [~ e=%/Ldy = aL over the unit
cell. In this case, the variational criterion above becgraractly as in class except for the factomof

1- + L) e =" xzdy — k“a <
A) (K2 4+ L72) e 20/ Edudy — k2alL 0
0 —00
= %—// A (K2 + L72) e 21/ Ly dy,
0 —o0

which becomes negative in the limlit— oo thanks to our assumption thﬁof‘ ffooo Az, y) dzdy >

0. Note that the fact that\ - (k? + L=2) e~2Iv//L| < 2k2|A| for small L and [ |A| < oo ensures
that we can interchange the limits and integration, by Lgbes dominated convergence theorem, as
in class®

(b) Let us assume that we can choegg) andv(y) to be functions ofy only (i.e., again the trivial
constant-function periodicity im). The fact thav - H = 0 implies that(V +ik) - [u(y)X+v(y)y] =
0 = sku + ¢/, and therefore: = v’ /k. Therefore, it is convenient to choosgy) to be a smooth
function so that is differentiable. Let us choose

o(y) = eV /2

in which caseu(y) = — e ¥"/2L°. Recall the Gaussian integrafs°_e¥"/%’dy = Ly/7 and
ffooo er*yZ/de = L3ﬁ/2 SO,f |H|2 — CLf |u|2 + |1)|2 = aLﬁ[l + ﬁ] AlSO, (V + Zk) «
[u(y)X + v(y)y] = —u'z + ikj. So,

. 1 y2 .2 2

IV x HI? = [(V +ik) x Hi2 = [o/> + K [o]* = k> [1 + <1 - L_ﬂ e
Then, if we look at our variational criterion, we have twortet [ |V x H[? and— [ A - |V x H|?.
The latter bounded above by something proportiongMpand hence we can swap the— oo limit

and the integral, as above. Combining the former with-t#é | |H|? term in the variational criterion,
we get:

e 1 y2 272 1
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= V(1 5m) -5

which goes to zero a6 — co. Thus:

/(1—A)|(V+ik)><Hk|2—k2/|Hk|2—>—k2/ / Az, y) dzdy < 0.
0 —00

asL — oo. Q.E.D.

3| initially incorrectly stated that the requirement was fon, .+ A = 0, which makes the integrand uniformly convergent in
L. The problem is that uniform convergence only allows us tapslimits and integration for integrals over finite rangebgveas here
our integration is or{—oo, c0). On the other hand, in the common case wh&re= 0 outside some finite region, then we can apply
uniform convergence.



Problem 3: 2d Waveguide M odes

(a) Maxwell’s equations are (in terms H) given by the eigen-equation x %V xH = “g—ZH Suppose

(b)

that we replace by ae wherea is some constant. By inspection, one obtainsstie eigensolution
H with w replaced byw/+/a (we just divided both sides by). Thus, scaling epsilon everywhere
by a constant just trivially scales the eigenvalues (we adave alternatively rescaled the fields:
H(x) — H(xy/«)). Therefore, we can set, = 1 by simply recalings by & = 1/¢;,, without loss
of generality.

Since we are looking for “TM” solution®’, (z,y) = e** Ex(y), i.e. withE in the z direction, then

we already saw from the last problem set that the eigen-mousitmplifies to— V2 E, = ‘g—fsEz, and
when we plug in the?? form we get:

d2

_d_y2Ey = ( % — kQ)Ey

(where | have chosen= 1 units for simplicity).

(i) In any region where is constant, the above equation is solved simply by sinesasithes if
w?e — k% > 0 and by exponentials otherwise. Since we haye-a0 mirror plane, the solutions
can be chosen either even or odd, and therefore ingthec h/2 region we have solutions
Ey = Acos(k,y) or Asin(k, y), where

kJ_ = wzshi — kz.

If £, is imaginary, these beconeesh andsinh solutions, but we will see below that this won’t
happen. Inthéy| > h/2 region, since we are looking for solutions below the ligheli?¢;, <
k2), we must have exponentials...and requiring the solutiohe finite at infinity we must have
E, = Be %Y fory > h/2 and+Be"¥ for y < —h/2 (with + depending on whether the state is

even or odd, where:
k=Vk?— w2, =/k2(1—f)— k2,

where we defing = ¢;,/en; < 1 (the dielectric contrast), and we have used the definition of
k, from above.

(i) Let's consider first thesven solutions (cosine). Continuity df), implies thatA cos(k, h/2) =
Be~*"/2 and continuity of5}, ~ H, implies that-k, Asin(k h/2) = —xBe™""/2. Dividing
these two equations, we find:

K k21— f)—k1f

tan(k h/2) = o m .

Similarly, for theodd solutions (sine), we obtain:

cot(k h/2) = — k1 _k:f) — kif
1

These are transcendental equationsifor We plot the left and right hand sides of these two
equations in figure 1, where the intersections of the curiwesthe guided-mode solutions.

What about imaginark, solutions? In this case, the left hand sigen(or cot) would be purely
imaginary, while the right hand side would also be purelygmary, so it seems like there might
be some such solutions. Consider the even modié) gquation. The tangent of an imaginary
k. is always imaginary with theame sign as the imaginary part &f, , whereas the right hand



Figure 1: Plot of the two transcendental equations for evedean (left plot) and odd modes (right plot) as a
function of k. h/2. The thick lines show the right hand sides, while the thiedishow the left hand sides
(tan or cot) of the equations, and the intersections correspond teeguidode solutions. This plot is for the
particular case of = 0.1 andkh/2 = 2.

side will be imaginary with thepposite sign (/i = —i)—because of that, the two curves will
never intersect for imaginary:; and there will be no solution. Conversely for the odd-mode
case. So, there are no imaginary solutions, as promised—this means that the guided modes
must always beabove the light line fore;;, which makes physical sense (they must correspond
to propagating modes in the,; region andevanescent modes in the;, regions).

(iii) We can see immediately that the right-hand side of thescendental equations is a real number
only whenk,; < |k % —1 = k7. Furthermore, we will clearly have an intersection for

every branch of the tangent/cotangent curve that passes thrarghefore £7°**. The tangent
curves pass through zero wheneket: /2 is an integer multiple ofr, and the cotangent curves
pass through zero whén h/2 + /2 is an integer multiple of. Therefore, the number of even
modes is simply the number of zero crossings bekdt&”, namely:

|klhy/$ —1

#evenmodes | ——— | +1,
2w

where the+1 is for the first branch of the tangent (which has a zero crgsatt; = 0 and
thereforealwaysintersects the right-hand-side at least once). Heréztyyve mean the greatést
integer< x. Similarly, the number of odd modes is also given by the nurbeero crossings:

kg /L — 1+

#oddmodes= | ———— |,
2

where in this case we see that we will not havy odd guided modes fdi|h % -1 <
Therefore, a& — 0 we get exactly one (even) guided mode.

4There is some ambiguity about whether to define the mode dsguihen the argument ¢ | here is exactly an integer, because
that corresponds to the case where the mode is exactly oigttdihe and hence has = 0. If we don't call that a guided mode, then
we have to modify our formula by one in that case, but since ghuation has measure zero in the parameter space, thioquess
no practical significance.
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Figure 2: Band diagramw(vs. k) for five even TM bands of;,; = 12 waveguide structure with thickness
h = a. Right: zoom in on point where band 4 enters the light cone, showfiiegteof increasing cell size
fromY = 10 (blue) toY = 20 (cyan).

Just for fun, let's look at the TE polarizatioBI(in the z direction). For theH, = He™* polarization,
we have very similar equations except that the boundaryitiond are thatd}, is continuous and?}, /¢ is
continuous (sincéf; ~ D, = D)). Thus, for example for theos(k y) mode (theodd mode, sincdl is a
pseudovector), we havek Asin(k) h/2)/ep; = —nBe*"h/Q/alo. Therefore, both thean andcot in the
transcendental equations get multipledfby: ¢, /e1,;. What effect does this have on the solutions? Multi-
plying by f < 1 decreases the tangent curves, but dorat change the locations of their zeros. Therefore,
the number of modes at a giverk is unaffected. However, the intersection point is clearly pulled towards
larger values ofk; when the tan/cot is shrunk, which correspondsialler values ofx, the decay rate.
Therefore, the modes akess strongly confined for thél, (TE) polarization. (Later in the class, we will see
how this generally follows from the boundary conditions #imel variational theorem.)

Problem 4: Numerical computations with M PB

(a) The 2dwaveguide.ctl file by default is already for a laegeughk (0 to 2 - 27 /a) to get five even
modes (in fact, there are more, as we would see if we increasedbands, and the result is shown
in figure 2 (left). If we double the size of the computationall¢fromY = 10to Y = 20), then
the change is insignificant—we can't even see on the regudgty If we zoom in on the crossover
point for band 4, as in figure 2 (right), then we can see a stibhnhge. To get the crossover points, |
increased the number of k points to k-interp=100, and th&rpolated the intersection points. The
first band, of course, is guided startingkat= 0, just as we predicted. The next three bands intersect
the light line atka/27 of 0.2979, 0.5954, and 0.8926, respectively. Our analyfioadiction from
problem 2 was that we would get a new even mode whenevef1/f — 1/2r was an integer, i.e.
for kh /27 an integer multiple ol /1/1/f — 1. In this casel = a = 1, andf = 1/12, so we should
get modes starting &ta /27 of 0.3015, 0.6030, and 0.9045. This matches our numeritaliegion
to an accuracy of better than 2%, which is as good as we carcexfibout increasing the number of
k points, etc.

(b) If we plot the fields aka/27 = 1 on a log scale in figure 3(left), we see that the amplitude ykeaa
a straigth line (thus, exponentially) at first, but then jostomes noisy. What is going on here? The
answer is twofold. First, MPB solves for the modes by an fteegorocess, optimizing the Rayleigh
quotient until some tolerance (by default,~”) in theeigenvalueis achieved. However, because very
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Figure 3: Fieldg E, [for first three even TM modes af,; = 12 waveguide, fod” = 10 cell atka/27 = 1,
showing exponential decay (straight line on log scale)l timtiise floor” caused by finite numerical error in
the fields is reached.eft: default (0~7) tolerance in MPBRight: decreased1()~'%) tolerance in MPB;

we C

()

an’'t decrease the tolerance much further because dhfigaint errors.

small values of the field have little effect on the eigenvaMPB does not try to converge them, and
thus we see random tiny values once the field decays beyondaancpoint. We can improve the
accuracy of the small field values by reducing this tolerariteve run MPB with tolerance=1e-14,
we see the field shown in figure 3(right), which decays line@xponentially) for a much larger range
of y. It still has some noise at the boundaries, however, bedaedinite precision of floating point
arithmetic does not let us get more accurate than this in ompatation. If we reduce the cell size,
however, so that it did not decay so much before reaching ti@dary, however, we would see the
field flatten out to a minimum value at the boundary for even @sd@r go to a node for odd modes),
due to the periodic boundary conditions.

To pute = 2.25 instead of air on thg < —h/2 side, we simply modify the geometry list to:

> (set! geonetry
(list (make block (center 0 (/ Y -4) 0)
(size infinity (/ Y 2) infinity)
(material (make dielectric (epsilon 2.25))))
(make bl ock (center 0 0 0)
(size infinity h infinity)
(material (make dielectric (epsilon eps-hi))))))

VVVYVYVYV

That is, we added another block,of= 2.25, before the waveguide block. The new block has width
Y'/2, but where it overlaps with the waveguide the waveguidesakecedence (because it corafter

in the geometry list). NowBE CAREFUL - the original 2dwaveguide.ctl file computed th&ven
andy-odd modes separately, but now there isyng: 0 mirror plane. We must just use (run-te) and
(run-tm).

Now, if we plot the TM and TE modes, it looks at first as if thesenb cutoff for the fundamental
TM mode! This isn’t the case, however. The problem is that,ni@des very near the light cone,
they become delocalized and our computational cell neethe tlarger. If we increase the size to
Y = 40, and zoom in on the origin, we see that the first TM mode doe=diddhave a cutoff at around
wa/2me = 0.02 (whereas the TE cutoff is at a frequency around 0.1).
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Figure 4: TM (blue) and TE (red) bands of; = 12 waveguide withe = 2.25 on one side, which causes a
cutoff in the modes. (The light cone here.ds> ck/+/2.25.) At right is the same band diagram, but zoomed

in to show the cutoff for the first TM band, using a larg¥r £ 40) cell.

(d) This waveguidshould have a TM (and a TE) guided mode fali values ofk, becausd A(y) dy =

J(1—=1/e)dy = (h/2)- (0.5 — 0.25) > 0, applying our variational proof from class and from prob-
lem 2.

To show this numerically, we look at the first TM guided moda, $mall values of: we change
num-bands to 1, kmax to 0.1, and k-interp to 200. (Similarc)p §bove, we modify the geometry to
contain two blocks of thickneds/2.) Since we are looking at smadl (large)\), we don’t need such

a high resolution and reduce resolution to 10; this willallas to look at much larger computational
cells. Then, in figure 5, we plet — w, how far we are above the light cone—this should be positive
for guided modes and should go to zerofor- 0. This is precisely what we see, plotting on a log-log
scale to see the power-law dependence.

However, we have to be careful: @s— 0, we must increase the computational cell size so that
the guided mode does not “see” the boundary. In particutaweincreas&” from 10 to 20 to ... to
1280, we see thatt — w is indeed converging to a positive, decreasing functioth@tight side of
the plot), whereas small values (at the left side of the plot) are not yet convergetifoeitrend is
clear: it is going towards a steeper power-law decay (wlsafehere were a cutoff the curve would
diverge towards-oo).
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Figure 5: The amountk — w by which the lowest TM mode of the,; = {2,0.8} system is below the
light line, as a function ok, on a log-log scale (straight line = power law). As we incest® size of
the computational celt” from 10 to 1280, this curve decreases for smkafivhere the large wavelength is
strongly affected by a finite computational cell), and isachg converging (at the right side of the plot) to a
steeper power-law decay.



