
18.369 Problem Set 3

Due Friday, 14 March 2008.

Problem 1: Variational Theorem

Suppose that we have a generalized Hermitian eigen-
problemÂψ = λB̂ψ on some Hilbert spaceψ with
Â† = Â, B̂† = B̂, andB̂ positive-definite.

(a) Derive the variational theorem via the “quick
and dirty” method as in class: assuming a com-
plete basis of eigenstatesψn with eigenvalues
λn, show thatλmin ≤ F{ψ} ≤ λmax for any
ψ 6= 0 and some functionalF{ψ}, for the min-
imum and maximum eigenvalues (if any)λmin
andλmax. (For example, ifB̂ = 1 then we
have an ordinary eigenproblem, andF{ψ} =
〈ψ, Âψ〉/〈ψ, ψ〉 as in class.)

(b) Without using completeness, show thatextrema
of your functionalF{ψ} only occur whenψ is
an eigenstate of the generalized eigenproblem.
Do this by the using property that, at an ex-
tremumψ, the functional must bestationary:
that is, if we add any smallδψ to ψ at an ex-
tremum, the changeF{ψ+δψ}−F{ψ} is zero
to first order inδψ. You should be able to show
that this stationary condition implies thatψ sat-
isfies the generalized eigen-equation.

(c) Assume that we have a periodic structureε
and therefore the electric fieldE can be cho-
sen in the form of a Bloch modeE =
ei(k·x−ωt)Ek(x) for some Bloch wavevector
k, whereEk(x) is periodic. Use the varia-
tional theorem for the generalized eigenprob-
lem, which you derived above, to write an ex-
pression for the minimum eigenvalueωmin(k)
as the minimum of some space of possible pe-
riodic field patternsEk. (I actually stated the
result without proof in class.)

Problem 2: Guided modes in periodic
waveguides

In class, we showed by a variational proof that any
ε(y), in two dimensions, gives rise to at least one
guided mode wheneverε(y)−1 = ε−1

lo − ∆(y) for
∫

∆ > 0 and
∫

|∆| < ∞.1 At least, we showed it

1As in class, the latter condition on∆ will allow you to swap
limits and integrals for any integrand whose magnitude is bounded

for the TE polarization (H in the ẑ direction). Now,
you will show the same thing much more generally,
but using the same basic technique.

(a) Letε(x, y)−1 = 1−∆(x, y) be a periodic func-
tion ∆(x, y) = ∆(x + a, y), with

∫

|∆| < ∞
and

∫ a

0

∫ ∞

−∞
∆(x, y)dxdy > 0. Prove that at

least one TE guided mode exists, by choosing
an appropriate (simple!) trial function of the
formH(x, y) = u(x, y)eikxẑ . That is, show by
the variational theorem thatω2 < c2k2 for the
lowest-frequency eigenmode. (It is sufficient to
show it for|k| ≤ π/a, by periodicity ink-space;
for |k| > π/a, the light line is notω = c|k|.)

(b) Prove the same thing as in (a), but for the TM
polarization (E in the ẑ direction). Hint: you
will need to pick a trial function of the form
H(x, y) = [u(x, y)x̂ + v(x, y)ŷ]eikx whereu
andv are some (simple!) functions such that
∇ · H = 0.2

Problem 3: 2d Waveguide Modes

Consider the two-dimensional dielectric waveguide
of thicknessh that we first introduced in class:

ε(y) =

{

εhi |y| < h/2
εlo |y| ≥ h/2

,

whereεhi > εlo. Look for solutions with the “TM”
polarizationE = Ez(x, y)ẑe

−iωt. The boundary
conditions are thatEz is continuous and∂Ez/∂y
(∼ Hx) is continuous, and that we require the fields
to be finite atx, y → ±∞,

(a) Prove that we can setεlo = 1 without loss
of generality, by a change of variables in
Maxwell’s equations. In the subsequent sec-
tions, therefore, setεlo = 1 for simplicity.

(b) Find the guided-mode solutionsEz(x, y) =
eikxEk(y), where the corresponding eigenvalue
ω(k) < ck is below the light line.

above by some constant times|∆| (by Lebesgue’s dominated con-
vergence theorem).

2You might be tempted, for the TM polarization, to use the
E form of the variational theorem that you derived in problem 1,
since the proof in that case will be somewhat simpler: you canjust
chooseE(x, y) = u(x, y)eikx

ẑ and you will have∇ · εE = 0
automatically. However, this will lead to an inequivalent condition
∫

(ε − 1) > 0 instead of
∫

∆ =
∫

ε−1

ε
> 0.
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(i) Show for the|y| < h/2 region the solu-
tions are of sine or cosine form, and that
for |y| > h/2 they are decaying exponen-
tials. (At this point, you can’t easily prove
that the arguments of the sines/cosines are
real, but that’s okay—you will be able to
rule out the possibility of imaginary argu-
ments below.)

(ii) Match boundary conditions (Ez andHx

are continuous) aty = ±h/2 to obtain
an equation relatingω andk. You should
get a transcendental equation that you can-
not solve explicitly. However, you can
“solve” it graphically and learn a lot about
the solutions—in particular, you might
try plotting the left and right hand sides
of your equation (suitably arranged) as a

function ofk⊥ =
√

ω

c2

2εhi − k2, so that
you have two curves and the solutions are
the intersections (your curves will be pa-
rameterized byk, but try plotting them for
one or two typicalk).

(iii) From the graphical picture, derive an ex-
act expression for the number of guided
modes as a function ofk. Show that there
is exactly one guided mode, with even
symmetry, ask → 0, as we argued in
class.

Problem 4: Numerical computations with
MPB

For this problem, you will gain some initial ex-
perience with the MPB numerical eigensolver de-
scribed in class, and which is available on Athena
in the meep locker. Refer to the class hand-
outs, and also to the online MPB documentation
at jdj.mit.edu/mpb/doc. For this problem, you will
study the simple 2d dielectric waveguide (withεhi =
12) that you analyzed analytically above, along with
some variations thereof—start with the sample MPB
input file (2dwaveguide.ctl) that was introduced in
class and is available on the course web page.

(a) Plot the TM (Ez) even modes as a function of
k, from k = 0 to a large enoughk that you
get at least four modes. Compare where these
modes start being guided (go below the light
line) to your analytical prediction from problem
1. Show what happens to this “crossover point”

when you change the size of the computational
cell.

(b) Plot the fields of some guided modes on a log
scale, and verify that they are indeed expo-
nentially decaying away from the waveguide.
(What happens at the computational cell bound-
ary?)

(c) Modify the structure so that the waveguide has
ε = 2.25 instead of air on they < −h/2 side.
Show that there is a low-ω cutoff for the TM
guided bands, as we argued in class, and find
the cutoff frequency.

(d) Create the waveguide with the following profile:

ε(y) =







2 0 ≤ y < h/2
0.8 − h/2 < y < 0

1 |y| ≥ h/2
.

Should this waveguide have a guided mode as
k → 0? Show numerical evidence to support
your conclusion (careful: as the mode becomes
less localized you will need to increase the com-
putational cell size).
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