
Figure 1: Electric fields (Ez) of eigenmodes inside a 2d metal box. Blue/white/red indicate posi-
tive/zero/negative fields.

18.369 Problem Set 2 Solutions

Problem 1: Projection operators

Consider the action of P̂ (α)
i on a partner function φ(α′)

j , as defined in the handout. We obtain P̂ (α)
i φ

(α′)
j =

dα

|G|
∑

g∈GD
(α)
ii (g)∗Ôgφ

(α′)
j = dα

|G|
∑

g∈GD
(α)
ii (g)∗[

∑
i′ φ

(α′)
i′ D

(α′)
i′j (g)]. If we perform the

∑
g first, then

from the Great Orthogonality Theorem we get
∑

i′ δii′δijδαα′φ
(α′)
i′ = δijδαα′φ

(α)
i . Thus, for a state ψ =∑

α

∑
i c

(α)
i φ

(α)
i decomposed into partner functions (as proved in class), P̂ (α)

i ψ = c
(α)
i φ

(α)
i . Q.E.D.

Problem 2: Symmetries of a field in a square metal box

(a) For E = Ez(x, y)ẑ in air (ε = 1), we get ∇×∇×E = −∇2Ez ẑ = ω2

c2 Ez . The solutions of this are
sines and cosines, and to satisfy the Ez = 0 boundary conditions at x = 0, L and y = 0, L we must
have:

Ez = A sin
(nπ
L
x
)

sin
(mπ
L
y
)

where n and m are positive integers and A is an amplitude. The corresponding frequency is ω =
c π

L

√
n2 +m2. This solutions are plotted in Figure 1 for the first few values of n and m.

(b) Since E is a vector, we can treat Ez as an ordinary scalar field here (no funny −1 factors under
reflections). Therefore, from the field plots we can see that n = m = 1 (and, in fact, any n = m =
odd) transforms as Γ1 (the trivial representation) and n = m = 2 (and any n = m = even) transforms
as Γ4 (even with diagonal mirror planes and odd with horizontal/vertical mirrors). Any n 6= m state
is (at least) doubly degenerate (with the (m,n) state), such as the (n,m) = (2, 1) and (1, 2) states
shown in Fig. 1. There are three cases:

(i) If n is even and m is odd or vice versa, e.g. (n,m) = (2, 1), then it transforms as Γ5.

(ii) If both n and m are odd, e.g. (n,m) = (3, 1), then it forms a 2×2 reducible representation with
(m,n). To decompose it into irreducible representations, we just take the sum and difference of
the two eigenmodes. The (n,m)+(m,n) state transforms as Γ1, and (n,m)−(m,n) transforms
as Γ3. This is shown in the left two panels of Fig. 2.

(iii) If both n andm are even, e.g. (n,m) = (4, 2), then it again forms a 2×2 reducible representation
with (m,n). The (n,m)+ (m,n) state transforms as Γ4, and (n,m)− (m,n) transforms as Γ2.
This is shown in the right two panels of Fig. 2.
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Figure 2: Electric fields (Ez) of eigenmodes inside a 2d metal box for accidentally degenerate (n,m) states
n 6= m. By forming linear combinations as shown, we can create eigenmodes which transform as, from left
to right: Γ1, Γ3, Γ4, and Γ2. Blue/white/red indicate positive/zero/negative fields.

Problem 3: Symmetries of a field in a triangular metal box
Now we consider the solutions in a triangular box with side L.

(a) The different symmetry operations in the space group of a triangle are shown in Figure 3 : three
mirror planes σ, and counter-clockwise rotation C3 by 120◦ (and also C−1

3 , clockwise rotation), and
of course the identity E. There are three conjugacy classes: {E}, {σ1, σ2, σ3}, and {C3, C

−1
3 }. This

is because σ3 = C−1
3 σ1C3, σ2 = C3σ1C

−1
3 , and C−1

3 = σ1C3σ1. The multiplication table of the
group is:

◦ E C3 C−1
3 σ1 σ2 σ3

E E C3 C−1
3 σ1 σ2 σ3

C3 C3 C−1
3 E σ3 σ1 σ2

C−1
3 C−1

3 E C3 σ2 σ3 σ1

σ1 σ1 σ2 σ3 E C3 C−1
3

σ2 σ2 σ3 σ1 C−1
3 E C3

σ3 σ3 σ1 σ2 C3 C−1
3 E

(b) The character table of C3v must have only three representations since there are three classes, and the
sum of the squares of the dimensions must equal 6 (the number of elements in the group). From
this, the only possibility is for the representations to have dimensions 1, 1, and 2 (this gives the first
column of the table). The first row must be the trivial representation, and by applying the orthogonality
relations we get the other two rows:

E 2C3 3σ
Γ1 1 1 1
Γ2 1 1 -1
Γ3 2 -1 0

where Γ1···3 are traditional names for these three representations.

(c) For Γ1 and Γ2, the representations are one-dimensional and are therefor simply numbers equal to the
characters in the character table (±1, from above). For Γ3, we must first construct partner functions.
Let’s guess f(x) = x. If we then operate the different group elements on this, recalling the coordi-

nates rotated counter-clockwise by an angle θ are multiplied by the 2×2 matrix
(

cos θ − sin θ
sin θ cos θ

)
,

we get:
E C3 C−1

3 σ1 σ2 σ3

x (−x+ y
√

3)/2 (−x− y
√

3)/2 (−x− y
√

3)/2 (−x+ y
√

3)/2 x

and therefore if we operate the Γ3 projection operator P̂ (3) = 2
6 (2ÔE−ÔC3−ÔC−1

3
) on f(x) = xwe
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Figure 3: Symmetries of C3v (triangle symmetries): three mirror planes σ, and rotation C3 by 120◦.

get simply x—thus, the function xmust itself be a partner function for Γ3 and no other representation.
Moreover, the operation of the space group on x is clearly spanned by the orthogonal functions x and
y, and so we must have a representation given simply by the 2× 2 rotation matrices that transform the
functions {x, y}:

E C3 C−1
3 σ1 σ2 σ3„

1 0
0 1

«
1
2

„
−1

√
3

−
√

3 −1

«
1
2

„
−1 −

√
3√

3 −1

«
1
2

„
−1

√
3√

3 1

«
1
2

„
−1 −

√
3

−
√

3 1

« „
1 0
0 −1

«
where to get σ1 and σ2 we used σ1 = σ3C3 and σ2 = σ3C

−1
3 from the multiplication table above. The

unitarity of these matrices follows immediately from the fact that they come from the 2 × 2 rotation
matrices, and can be easily verified in any case. Their traces clearly match those in the character table.

(d) Ez field patterns that transform as these representations are very crudely sketched in Figure 4, where
+ and − denote maxima and minima of the field. Note that because E is a vector, the component Ez

transforms as an ordinary scalar in the xy plane, and “even” and “odd” fields are what we expect; note
also that the boundary conditions require Ez to go to zero at the edges of the triangle, so all extrema
must lie in the interior. The Γ3 mode must be doubly degenerate, of course, and can be chosen so
that one mode is even with respect to a single one of the mirror planes and the other mode is odd with
respect to that mirror plane, as shown. (For example, in our {x, y} representation matrices above,
this even/odd plane was σ3, although of course the modes could be rotated to be even/odd around any
of the three σ’s.) From the representation matrices, we can see that one degenerate partner may be
found by operating (ÔC3 − ÔC−1

3
)/
√

3 on the other—i.e., by the difference of its 120◦ and −120◦

rotations (this will give an orthogonal mode because it will have opposite even-odd symmetry under
one of the mirror planes). The lowest-order Ez mode should be Γ1 (fewest nodes → smallest ∇2

term in eigenproblem). A less crude sketch would be to show contours of the field as in class, but
in lieu of that I opted to show you an exact numerical calculation of the first few eigenmodes of this
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Figure 4: Sketch of possible Ez field patterns (for the lowest-ω modes of each symmetry) in the triangular
cavity corresponding to the three representations. Note that a Γ3 mode must be doubly degenerate with two
field patterns roughly as shown.

4



Figure 5: Ez field plots of first few lowest-ω modes in a triangular air cavity surrounded by metal (black)
with side L, from a numerical calculation. The corresponding frequencies ωL/2πc (and representations)
are, from left to right: 1.16 (Γ1), 1.78 (Γ3), 2.32 (Γ1), 2.60 (Γ3), 2.93 (Γ3), and 3.08 (Γ2). Note that the
second, fourth, and fifth modes (from left) are doubly degenerate (their degenerate partner is not shown, but
can be found by subtracting 120◦ and −120◦ rotations of the field). (Slight asymmetries in the Γ2 state are
due to the finite computational grid resolution.)

cavity, in Figure. 5, which illustrates all three representations (note that the lowest ω mode of each
representation looks much like our “guess”). The lowest frequency mode of Ez transforms like Γ1

because that has the fewest oscillations (only a single extremum).

TheHz field sketches, in Figure 6, are somewhat different, for two reasons. First, H is a pseudovector,
so Hz transforms as a pseudo-scalar and our normal conceptions of “even” and “odd” are reversed.
Second, because of the boundary conditions the extrema of Hz tend to occur on the boundaries of the
triangle, at least for the low-ω modes. So, for example, now the Γ1 mode looks odd with respect to
all of the mirror planes, and will only appear for higher-ω modes. The Γ2 mode is the one that looks
most symmetric, but because the extrema lie on the boundaries there will tend to be a minima in the
center of the triangle for the lowest-ω mode. The lowest-order Hz mode should be Γ3, since it has
the fewest nodal planes. The corresponding numerical calculations are shown in Figure 7. Here, the
least-oscillatory (lowest-ω) mode corresponds to Γ3, with only two extrema. Note that the numerical
Γ1 mode is higher-order (each of our sketched extrema is split into two) than our cartoon (I couldn’t
find any lower-order Γ1 modes, and I’m not quite sure why...).

(e) We want an operation on one partner function that gives us the other (with some sign/coefficient), i.e.

which corresponds to a matrix of the form
(

0 ±1
±1 0

)
. By inspection of the Γ3 representation

matrices from (c), there are several ways to get a matrix of this form. For example, (E + 2C3)/
√

3

or (more symmetrically) (C3 − C−1
3 )/

√
3, or (σ1 − σ2)/

√
3 =

(
0 1
1 0

)
. That means, if we

have a solution ψ corresponding to one of the degenerate partner functions of Γ3, then, for example,
(Ôσ1 − Ôσ2)ψ/

√
3 gives us the other orthogonal partner function.

Problem 3: Cylindrical symmetry
(a) If D is a representation where D(φ) is the matrix corresponding to rotation by an angle φ around

the z axis, then we must have D(φ + ∆φ) = D(φ)D(∆φ) by definition of representations (rotating
by ∆φ followed by φ is exactly the same as rotating by φ + ∆φ). Therefore, as we derived in class
for the translation group (which had the same property), the representations must all be of the form
D(m)(φ) = e−imφ where m is some number characterizing the representation (k in class). For the
translation group, this number was a completely arbitrary real number (it could even be complex, if
we allowed divergent representations). Here, however, we have a further constraint: rotation by 2π
must be the same as doing nothing, and therefore we must have D(2π) = 1 for D to represent the
group. This implies that m is an integer (so that e−i2πm = 1).
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Figure 6: Sketch of possible Hz field patterns (for low-ω modes) in the triangular cavity corresponding to
the three representations. Note that a Γ3 mode must be doubly degenerate with two field patterns roughly as
shown.
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Figure 7: Hz field plots of the lowest-ω mode for each irreducible representation of C3v in a triangular air
cavity surrounded by metal (black) with sideL, from a numerical calculation. The corresponding frequencies
ωL/2πc (and representations) are, from left to right: 0.66 (Γ3), 1.14 (Γ2), and 3.01 (Γ1). Note that the
leftmost mode is doubly degenerate (its degenerate partner is not shown, but can be found by subtracting
120◦ and−120◦ rotations of the field). (Slight asymmetries in the Γ1 state are due to the finite computational
grid resolution.) There are 8 modes (not shown) with frequencies between 0.66 and 1.74.

Note, by the way, that you might be tempted to form 2 × 2 representation matrices via the ordi-

nary (x, y) rotation R =
(

cosφ sinφ
− sinφ cosφ

)
, but this is reducible: R = exp

(
0 iφ
−iφ 0

)
, which

can be diagonalized into 1× 1 representations e±iφ .

(b) If ψ(r, φ, z) transforms like D(m), then rotating by θ (sending ψ(r, φ, z) → ψ(r, φ − θ, z)) must be
just multiplication by e−imθ. This means that ψ must be of the form ψm(r, z)eimφ. Since we further
have translational symmetry in z, we must have ψ = ψmk(r)eimφ+ikz . That is, we now have a one-
dimensional function and should obtain a one-dimensional Hermitian eigenproblem in r.

If we plug this ψ into −∇2ψ = ω2

c2 ψ, we can apply the form of ∇2 in cylindrical coordinates and
obtain:

−ψ′′km − 1
r
ψ′km + (

1
r2m

2 + k2)ψkm =
ω2

c2
ψkm,

where primes denote differentiation by r, which after a slight rearrangment becomes:

r2ψ′′km + rψ′km + (k2
⊥r

2 −m2)ψkm = 0,

where k2
⊥ = ω2

c2 − k2. Now, make a change of variables: x = k⊥r, y(x) = ψkm(x/k⊥), and we find:

x2y′′ + xy′ + (x2 −m2)y = 0,

which is precisely Bessel’s equation of orderm. The solutions of this are Jm(x) and Ym(x), the Bessel
functions of the first and second kinds. However, Ym(x) diverges at x = 0, which we can’t allow
(physical wave solutions can’t blow up in empty space). So, the eigensolution must by y(x) = Jm(x)
(choosing an arbitrary amplitude of 1), and thus

ψ(r, φ, z) = Jm(k⊥r)eimφ+ikz.

We’re not done yet, because we haven’t found k⊥. This is determined by the boundary condition
ψ|r=R = 0. That means we must have Jm(k⊥R) = 0, or k(n)

⊥ = xm,n/R where the xm,n are the
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Figure 8: The first few bands of the scalar wave equation in a cylindrical waveguide. Plotted are lowest four
bands for m = 0 (blue), m = ±1 (thick red), and m = ±2 (dashed green). Also, shown, for reference, is
the light line ω = ck of air (all modes lie above this and are therefore extended in the air core).

zeros of Jm. Solving for ω from k⊥, we finally get a discrete sequence of bands:

ω
(n)
mk(k) = c

√
k2 +

(xm,n

R

)2

.

Note, moreover, that J−m = Jm, and therefore the bands for m 6= 0 are doubly degenerate (this
actually also follows from mirror symmetry). To sketch the bands, we can choose dimensionless units
(c = 1, R = 1), and the result is shown in figure 8.

(c) The ψmk(r)eimφ+kz must be orthogonal (
∫
ψ∗1ψ2r dr dφ dz = 0 for eigenfunctions of different eigen-

values) since they are eigenfunctions of a Hermitian operator. For two different m and k values, they
are orthogonal since

∫
ei(m1−m2)φdφ = 0 for m1 6= m2 (which follows from group theory since they

correspond to different representations). For the same m, we must have that the r integral is zero, and
hence, changing variables to u = r/R, we have:∫ 1

0

Jm(xm,nu) · Jm(xm,n′u)u du = 0

for different zeros n 6= n′. (This is a well-known identity that is used in Fourier-Bessel series expan-
sions.)

Problem 5: Conservation Laws

(a) A current J modifies Ampere’s law: ∇ × H = 4π
c J − iω

c εE (where we have cancelled the e−iωt

time-dependence in every term). Therefore, when we take Faraday’s law ∇× E = iω
c H and operate

∇× on both sides, we get

(∇×∇×−ω
2

c2
ε)E = 4πi

ω

c2
J.

This is indeed of the form ÂE = b, where Â = ∇×∇×−ω2

c2 ε is a linear operator and b = 4πi ω
c2 J

is a given right-hand side.
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(b) Suppose that E solves ÂE = b, and that b transforms as some representation α of the space group.
Therefore, P̂ (α)b = b, where P̂ (α) = dα

|G|
∑

g χ
(α)(g)∗Ôg is the projection operator for that rep-

resentation. Moreover, by definition of the space group we must have [Â, Ôg] = 0 for any g in
the space group. Since Â is linear, and P̂ (α) is merely a linear combination of the Ôg’s, then
[Â, Ôg] = 0 (∀g) =⇒ [Â, P̂ (α)] = 0. Therefore ÂE = b = P̂ (α)b = P̂ (α)ÂE = ÂP̂ (α)E,
and thus Â(1− P̂ (α))E = 0. Therefore, either E transforms as α (P̂ (α)E = E), or the component of
E that doesn’t transform as α lies in the null space of Â—that is, Â is singular and we didn’t have a
unique solution E in the first place.

(c) If ω is one of the eigenfrequencies, then Â is singular—Â operating on an eigenstate E0 will give
zero by definition (since it is the generalized eigenequation as you derived in problem set 1). In a
finite system (i.e. compact support, not necessarily finite-dimensional), then physically you can get
a divergent (non-harmonic) solution, exactly like the case where you drive a harmonic oscillator at
the resonant frequency. Alternatively, if J is orthogonal to the eigenstate E0 (e.g. they are partner
functions of different representations), then there will be a solution, but it won’t be unique because
you can add any multiple of E0 while satistfying the equation (although one could easily impose some
additional condition to make it unique). In an infinite system, the question is more subtle because
the eigenstate in question (if it is an extended mode) can have infinitesimal overlap with J (if J is
localized). In this case, you can get a finite response, but to make it unique you have to impose some
additional boundary conditions. The classic example of this is a localized antenna source (e.g. a
dipole) in vacuum—vacuum has eigenmodes (planewaves) at every ω (ω = c|k|), but the resulting
field is a finite-amplitude spherical wave(s) emanating from the antenna, not a divergence (except at
the antenna itself, if J itself diverges as for a point source). To get a unique solution, however, we have
to impose a boundary condition that there are no incoming waves from infinity (which would satisfy
Maxwell’s equations, but wouldn’t be very physical). Hopefully, we will get a chance to discuss such
Green’s functions in greater depth later in the course.
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