18.369 Problem Set 1 Solutions

Problem 1: Adjoints and operators

- (a) If O is a matrix then $Oh' = \sum_n O_{mn} h'_n$ by the usual matrix-vector product. Then the dot product of h with Oh' is given by $\sum_m h_m^*(\sum_n O_{mn} h'_n) = \sum_n (\sum_m O_{mn}^* h_m)^* h'_n$, which is the same thing as the dot product of $O^{\dagger}h$ with h' where O^{\dagger} is the conjugate transpose of O. Thus, interpreting \dagger as the conjugate transpose in this finite-dimensional case is consistent with the abstract definitions given in class.
- (b) We simply rely on two required properties of inner products: conjugacy $\langle \phi, \psi \rangle = \langle \psi, \phi \rangle^*$, and linearity $\langle \phi, \alpha \psi \rangle = \alpha \langle \phi, \psi \rangle$. Then, $\langle \phi, \hat{O}\psi \rangle = \langle \phi, o\psi \rangle = o \langle \phi, \psi \rangle = o \langle \psi, \phi \rangle^* = \langle \psi, o^*\phi \rangle^* = \langle o^*\phi, \psi \rangle$. Thus, inspecting the definition of \hat{O}^{\dagger} , we see that $\hat{O}^{\dagger} = o^*$.
- (c) If \hat{O} is unitary and we send $\psi \to \hat{O}\psi$ and $\phi \to \hat{O}\phi$, then $\langle \phi, \psi \rangle \to \langle \hat{O}\phi, \hat{O}\psi \rangle = \langle \hat{O}^\dagger \hat{O}\phi, \psi \rangle = \langle \phi, \psi \rangle$, and thus inner products are preserved. Consider now two eigenstates $\hat{O}\psi_1 = \lambda_1$ and $\hat{O}\psi_2 = \lambda_2$. Then $\langle \psi_1, \psi_2 \rangle = \langle \hat{O}\psi_1, \hat{O}\psi_2 \rangle = \lambda_1^*\lambda_2^*\langle \psi_1, \psi_2 \rangle$, and thus $(\lambda_1^*\lambda_2 1)\langle \psi_1, \psi_2 \rangle = 0$. There are three cases, just like for Hermitian operators. If $\psi_1 = \psi_2$, then we must have $\lambda_1^*\lambda_1 = 1 = |\lambda_1|^2$, and thus the eigenvalues have unit magnitude. This also implies that $\lambda_1^* = 1/\lambda_1$. If $\lambda_1 \neq \lambda_2$, then $(\lambda_1^*\lambda_2 1) = (\lambda_2/\lambda_1 1) \neq 0$, and therefore $\langle \psi_1, \psi_2 \rangle = 0$ and the eigenstates are orthogonal. If $\lambda_1 = \lambda_2$ but ψ_1 and ψ_2 are linearly independent (degenerate eigenstates), then we can form orthogonal linear combinations by Gram-Schmidt.
- (d) Take two states ϕ and ψ , and consider the inner product. Then $\langle \phi, \psi \rangle = \langle \phi, \hat{O}^{-1} \hat{O} \psi \rangle = \langle (\hat{O}^{-1})^{\dagger} \phi, \hat{O} \psi \rangle = \langle \hat{O}^{\dagger} (\hat{O}^{-1})^{\dagger} \phi, \psi \rangle$. Since this must be true for all ψ and ϕ , then $\hat{O}^{\dagger} (\hat{O}^{-1})^{\dagger}$ must be the identity operation, and thus $(\hat{O}^{-1})^{\dagger} = (\hat{O}^{\dagger})^{-1}$. Q.E.D.

Problem 2: Completeness

- (a) Prove that the eigenvectors H_n of a finite-dimensional Hermitian operator \hat{O} (a $d \times d$ matrix) are complete:
 - (i) Given a Hermitian matrix O, the eigenvalues λ are the roots of the characteristic polynomial $\det |O \lambda \mathbf{1}|$. This polynomial is of degree d > 0, which means that it has at least one root λ_1 , and correspondingly at this point of zero determiniant there is a solution H_1 of $OH_1 = \lambda_1 H_1$. (λ_1 must, of course, be real because O is Hermitian.)
 - (ii) If H has $\langle H_1, H \rangle = 0$, then $\hat{O}H$ is also orthogonal to H_1 : $\langle H_1, \hat{O}H \rangle = \langle \hat{O}H_1, H \rangle = \lambda_1 \langle H_1, H \rangle$, since $\hat{O} = \hat{O}^\dagger$ for a Hermitian \hat{O} . Thus, \hat{O} transforms states orthogonal to H_1 into states orthogonal to H_1 . The set of states orthogonal to H_1 has dimension d-1, and we have shown that \hat{O} is a linear operator within this space—thus, \hat{O} within this space can be represented by a Hermitian matrix $O^{(1)}$ of size $(d-1) \times (d-1)$.

In particular, let S be a similarity transform that rotates $(1,0,\cdots,0)^1$ into H_1 and $(0,x_2,x_3,\cdots,x_d)$ into V_1 (i.e. the columns of S are H_1 followed by a basis for V_1 —without loss of generality, we can use an orthonormal basis for V_1). Then, $\tilde{O}=S^{-1}OS$ has the same eigenvalues as O and O has the block-diagonal form:

$$\tilde{O} = \left(\begin{array}{cc} \lambda_1 & 0 \\ 0 & O^{(1)} \end{array} \right)$$

where $O^{(1)}$ is $(d-1)\times (d-1)$ (the zeros in the first row come from our lemma, that vectors in V_1 are transformed by O into vectors in V_1 ; the zeros in the first column come from the fact that H_1 must be transformed into itself). If ${\bf v}$ is an eigenvector of $O^{(1)}$, then $S\cdot (0,{\bf v})$ is clearly an eigenvector of O orthogonal to O orthogonal to O is Hermitian, which in turn follows if O is unitary (so that O is Hermitian, which in turn follows if O is unitary (so that O is a unitary (so that O is a unitary, however, as long as we chose an orthonormal basis for O is then simply the dot products of the columns of O is, which gives the identity matrix O and thus O is O in the product of the columns of O in the product of the columns of O is the product of the columns of O in the product of the columns of O is a sutomatically unitary, however, as long as we chose an orthonormal basis for O is then simply the dot products of the columns of O is the product of the columns of O is an eigenvector of O in the product of the columns of O in the product of O is the product of O in the product of O in the product of O is the product of O in the product of O in the product of O in the product of O is the product of O in the prod

- (iii) We proceed inductively: if we assume that all $(d-1) \times (d-1)$ Hermitian operators have a complete orthonormal set of eigenvectors \mathbf{v} , then from above we can construct a complete orthonormal basis of eigenvectors for a $d \times d$ Hermitian matrix $O: S \cdot (0, \mathbf{v})$ are eigenvectors of O and must form a complete basis for V_1 , which combined with H_1 forms a complete basis for the whole space (which can be chosen orthonormal as we showed in class). The base case of the induction is d=1, where O must be simply a real number, and the corresponding eigenvector (1) is clearly complete.
- (b) Consider the 2×2 matrix $\begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$, with $a\neq 0$. The characteristic polynomial is $\lambda^2-2\lambda+1$, which obviously has a double root of $\lambda=1$. The corresponding eigenvectors $\begin{pmatrix} x \\ y \end{pmatrix}$ must satisfy $x+ay=\lambda x=x, \ y=\lambda y=y,$ and thus are satisfied for any $\begin{pmatrix} x \\ 0 \end{pmatrix}$. But these are all the eigenvectors of the matrix, and they obviously do not span the whole xy plane (they only span the x axis). Q.E.D.
- (c) If a particular Hermitian operator did *not* have a complete basis of eigenfunctions, that means that there are some solutions that cannot be represented as a linear combination of eigenfunctions. However, when we discretize the operator into a finite Hermitian problem on a computer, the resulting finite matrix

 $^{^{1}\}mathrm{By}\ (a,b,c,\cdots)$ here, we mean a column vector.

²A similarity transform v' = Sv preserves the eigenvalues, since if $Ov = \lambda v$ then $(S\tilde{O}S^{-1})v' = \lambda SS^{-1}v'$ by inspection.

is always diagonalizable from above. We would potentially, therefore, have a problem simulating such a problem accurately on a computer—the computer's eigenfunctions are always a complete basis for the discretized problem, so it is unclear how they could converge to the eigenfunctions of the continuous problem. Conversely, if we have a problem that can be simulated accurately on a computer, one might suspect that it is not one of those pathological operators lacking a complete basis of eigenfunctions. This is not a proof, of course, but the fact is that most interesting eigenproblems that arise in physics *can* be simulated well on a computer and *do* have a complete basis of eigenfunctions (the *spectral theorem* applies to them), and the point is that these two properties seem to be related.

Problem 3: Maxwell eigenproblems

(a) To eliminate ${\bf H}$, we start with Faraday's law $\nabla \times {\bf E} = i \frac{\omega}{c} {\bf H}$ and take the curl of both sides. We obtain:

$$\nabla \times \nabla \times \mathbf{E} = \frac{\omega^2}{c^2} \varepsilon \mathbf{E}.$$

If we divide both sides by ε , we get the form of a linear eigenproblem but the operator $\frac{1}{\varepsilon}\nabla\times\nabla\times$ is not Hermitian—integrating by parts, we find that its adjoint is $\nabla\times\nabla\times\frac{1}{\varepsilon}$, which is not the same operator unless the $\frac{1}{\varepsilon}$ commutes with the curls, which only happens if ε is a constant. However, if we leave it in the form above we have a generalized Hermitian problem with $\hat{A}=\nabla\times\nabla\times$ and $\hat{B}=\varepsilon$. \hat{A} is Hermitian for the same reason that $\hat{\Theta}$ was (it is $\hat{\Theta}$ for $\varepsilon=1$), and \hat{B} is Hermitian as long as ε is real (so that $\mathbf{H}_1^*\cdot\varepsilon\mathbf{H}_2=(\varepsilon\mathbf{H}_1)^*\cdot\mathbf{H}_2$).

(b) The proof follows the same lines as in class. Take two eigenstates ψ_1 and ψ_2 (where $\hat{A}\psi_{1,2}=\lambda_{1,2}\hat{B}\psi_{1,2}$), and consider $\langle\psi_2,\hat{A}\psi_1\rangle$. Since \hat{A} is Hermitian, we can operate it to the left or to the right in the inner product, and get $\lambda_1\langle\psi_2,\hat{B}\psi_1\rangle=\lambda_2^*\langle\hat{B}\psi_2,\psi_1\rangle=\lambda_2^*\langle\psi_2,\hat{B}\psi_1\rangle$, or $(\lambda_2^*-\lambda_1)\langle\psi_2,\hat{B}\psi_1\rangle=0$. There are three cases. First, if $\psi_1=\psi_2$, then we must have $\lambda_1=\lambda_1^*$ (real eigenvalues), since $\langle\psi_1,\hat{B}\psi_1\rangle>0$ by definition if \hat{B} is positive definite. Second, if $\lambda_1\neq\lambda_2$ then we must have $\langle\psi_2,\hat{B}\psi_1\rangle=0$, which is our modified orthogonality condition. Finally, if $\lambda_1=\lambda_2$ but ψ_1 and ψ_2 are linearly independent, then we can form a linear combination that is orthogonal (since any linear combination still is an eigenvector); e.g. by Gram-Schmidt

$$\psi_2 \to \psi_2 - \psi_1 \frac{\langle \psi_2, \hat{B}\psi_1 \rangle}{\langle \psi_1, \hat{B}\psi_1 \rangle},$$

where we have again relied on the fact that \hat{B} is positive definite (so that we can divide by $\langle \psi_1, \hat{B}\psi_1 \rangle$). This is certainly true for $\hat{B} = \varepsilon$, since $\langle \mathbf{E}, \varepsilon \mathbf{E} \rangle = \int \varepsilon |\mathbf{E}|^2 > 0$ for all $\mathbf{E} \neq 0$ as long as $\varepsilon > 0$ as we assumed in class.

(c) If $\mu \neq 1$ then we have $\mathbf{B} = \mu \mathbf{H} \neq \mathbf{H}$, and when we eliminate \mathbf{E} or \mathbf{H} from Maxwell's equations we get:

$$\nabla \times \frac{1}{\varepsilon} \nabla \times \mathbf{H} = \frac{\omega^2}{c^2} \mu \mathbf{H}$$

$$\nabla \times \frac{1}{\mu} \nabla \times \mathbf{E} = \frac{\omega^2}{c^2} \varepsilon \mathbf{E}$$

with the constraints $\nabla \cdot \varepsilon \mathbf{E} = 0$ and $\nabla \cdot \mu \mathbf{H} = 0$. These are both generalized Hermitian eigenproblems (since μ and $\nabla \times \frac{1}{\mu} \nabla \times$ are both Hermitian operators for the same reason ε and $\nabla \times \frac{1}{\varepsilon} \nabla \times$ were); we can't make them ordinary Hermitian eigenproblems for the same reason as in the \mathbf{E} eigenproblem above, except in the trivial case of μ or ε constant. Thus, the eigenvalues are real and the eigenstates are orthogonal through μ and ε , respectively, as proved above. To prove that ω is real, we consider an eigenstate \mathbf{H} . Then $\langle \mathbf{H}, \hat{\Theta} \mathbf{H} \rangle = \frac{\omega^2}{c^2} \langle \mathbf{H}, \mu \mathbf{H} \rangle$ and we must have $\omega^2 \geq 0$ since $\hat{\Theta}$ is positive semi-definite (from class) and μ is positive definite (for the same reason ε was, above). The \mathbf{E} eigenproblem has real ω for the same reason (except that μ and ε are swapped).

(d) Consider the H eigenproblem. (To even get this linear eigenproblem, we must immediately require ε to be an invertible matrix, and of course require ε and μ to be independent of ω or the field strength.) For the right-hand operator μ to be Hermitian, we require $\int \mathbf{H}_1^* \cdot \mu \mathbf{H}_2 = \int (\mu \mathbf{H}_1)^* \cdot \mathbf{H}_2$ for all \mathbf{H}_1 and \mathbf{H}_2 , which implies that $\mathbf{H}_1^* \cdot \mu \mathbf{H}_2 = (\mu \mathbf{H}_1)^* \cdot \mathbf{H}_2$. Thus, we require the $3 \times 3 \mu(\mathbf{x})$ matrix to be itself Hermitian at every ${\bf x}$ (i.e., equal to its conjugate transpose from problem 1). Similarly, for $\hat{\Theta}$ to be Hermitian we require $\int \mathbf{F}_1^* \cdot \varepsilon^{-1} \mathbf{F}_2 = \int (\varepsilon^{-1} \mathbf{F}_1)^* \cdot \mathbf{F}_2$ where $\mathbf{F} = \nabla \times \mathbf{H}$, so that we can move the ε^{-1} over to the left side of the inner product, and thus $\varepsilon^{-1}(\mathbf{x})$ must be Hermitian at every \mathbf{x} . From problem 1, this implies that $\varepsilon(\mathbf{x})$ is also Hermitian. Finally, to get real eigenvalues we saw from above that we must have μ positive definite ($\int \mathbf{H}^* \cdot \mu \mathbf{H} > 0$ for $\mathbf{H} \neq 0$); since this must be true for all H then $\mu(\mathbf{x})$ at each point must be a positive-definite 3×3 matrix (positive eigenvalues). Similarly, $\hat{\Theta}$ must be positive semi-definite, which implies that $\varepsilon^{-1}(\mathbf{x})$ is positive semi-definite (non-negative eigenvalues), but since it has to be invertible we must have $\varepsilon(\mathbf{x})$ positive definite (zero eigenvalues would make it singular). To sum up, we must have $\varepsilon(\mathbf{x})$ and $\mu(\mathbf{x})$ being positive-definite Hermitian matrices at every x. (The proof for the E eigenproblem is identical.)

Actually, there are a couple other possibilities. In part (b), we showed that if \hat{B} is positive-definite it leads to real eigenvalues etc. The same properties, however, hold if \hat{B} is negative-definite, and if both \hat{A} and \hat{B} are negative-definite we still get real, positive eigenvalues. Thus, another possibility is for ε and μ to be Hermitian negative-definite matrices. (For a scalar $\varepsilon < 0$ and $\mu < 0$, this leads to materials with a negative real index of refraction $n = -\sqrt{\varepsilon \mu}!$) Furthermore, ε and μ could both be anti-Hermitian instead of Hermitian (i.e., $\varepsilon^\dagger = -\varepsilon$ and $\mu^\dagger = -\mu$), although I'm not aware of any physical examples of this. More generally, for any complex number z, if we replace ε and μ by $z\varepsilon$ and μ/z , respectively, then ω is unchanged (e.g. making z=i gives anti-Hermitian matrices).