
18.369 Problem Set 1Due Friday, 15 February 2007.Problem 1: Adjoints and operators(a) We de�ned the adjoint † of operators Ô by:
〈H1, ÔH2〉 = 〈Ô†H1, H2〉 for all H1 and H2in the vetor spae. Show that for a �nite-dimensional Hilbert spae, where H is a olumnvetor hn (n = 1, · · · , d), Ô is a square d × dmatrix, and 〈H(1), H(2)〉 is the ordinary on-jugated dot produt ∑
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n , the aboveadjoint de�nition orresponds to the onjugate-transpose for matries.In the subsequent parts of this problem, youmay not assume that Ô is �nite-dimensional(nor may you assume any spei� formula forthe inner produt).(b) Show that if Ô is simply a number o, then

Ô† = o∗. (This is not the same as the previ-ous question, sine Ô here an at on in�nite-dimensional spaes.)() If a linear operator Ô satis�es Ô† = Ô−1, thenthe operator is alled unitary. Show that a uni-tary operator preserves inner produts (that is,if we apply Ô to every element of a Hilbert spae,then their inner produts with one another areunhanged). Show that the eigenvalues u of aunitary operator have unit magnitude (|u| = 1)and that its eigenvetors an be hosen to beorthogonal to one another.(d) For a non-singular operator Ô (i.e. Ô−1 exists),show that (Ô−1)† = (Ô†)−1. (Thus, if Ô is Her-mitian then Ô−1 is also Hermitian.)Problem 2: Completeness(a) Prove that the eigenvetors Hn of a �nite-dimensional Hermitian operator Ô (a d × dmatrix) are omplete: that is, that any d-dimensional vetor an be expanded as a sum

∑
n

cnHn in the eigenvetors Hn with some o-e�ients cn. It is su�ient to show that thereare d linearly independent eigenvetors Hn:(i) Show that every d × d Hermitian matrix
O has at least one nonzero eigenvetor H1[... use the fundamental theorem of algebra:every polynomial with degree > 0 has atleast one (possibly omplex) root℄.(ii) Show that the spae of V1 =
{H | 〈H, H1〉 = 0} orthogonal to H1is preserved (transformed into itself or asubset of itself) by Ô. From this, show thatwe an form a (d − 1) × (d − 1) Hermitianmatrix whose eigenvetors (if any) give (viaa similarity transformation) the remaining(if any) eigenvetors of Ô.(iii) By indution, form an orthonormal basis of
d eigenvetors for the d-dimensional spae.(b) Completeness is not automati for eigenvetorsin general. Give an example of a non-singularnon-Hermitian operator whose eigenvetors arenot omplete. (A 2× 2 matrix is �ne. This aseis also alled �defetive.�)() Completeness of the eigenfuntions is not au-tomati for Hermitian operators on in�nite-dimensional spaes either; they need to havesome additional properties (e.g. �ompatness�)for this to be true. However, it is true of most op-erators that we enounter in physial problems.If a partiular operator did not have a ompletebasis of eigenfuntions, what would this meanabout our ability to simulate the solutions on aomputer in a �nite omputational box (where,when you disretize the problem, it turns ap-proximately into a �nite-dimensional problem)?No rigorous arguments required here, just yourthoughts.Problem 3: Maxwell eigenproblems(a) In lass, we eliminated E from Maxwell's equa-tions to get an eigenproblem in H alone, of the1



form Θ̂H(x) = ω
2

c
2 H(x). Show that if you in-stead eliminate H, you annot get a Hermitianeigenproblem in E exept for the trivial ase

ε = onstant. Instead, show that you get a gen-eralized Hermitian eigenproblem: an equation ofthe form ÂE(x) = ω
2

c
2 B̂E(x), where both Â and

B̂ are Hermitian operators.(b) For any generalized Hermitian eigenproblemwhere B̂ is positive de�nite (i.e. 〈E, B̂E〉 > 0for all E(x) 6= 01), show that the eigenvalues(i.e., the solutions of ÂE = λB̂E) are real andthat di�erent eigenfuntions E1 and E2 satisfy amodi�ed kind of orthogonality. Show that B̂ forthe E eigenproblem above was indeed positivede�nite.() Show that both the E and H formulations lead togeneralized Hermitian eigenproblems with real ωif we allow magneti materials µ(x) 6= 1 (butrequire µ real, positive, and independent of Hor ω).(d) µ and ǫ are only ordinary numbers for isotropimedia. More generally, they are 3 × 3 matri-es (tehnially, rank 2 tensors)�thus, in ananisotropi medium, by putting an applied �eldin one diretion, you an get dipole moment indi�erent diretion in the material. Show whatonditions these matries must satisfy for us tostill obtain a generalized Hermitian eigenprob-lem in E (or H) with real eigen-frequeny ω.
1Here, when we say E(x) 6= 0 we mean it in the sense ofgeneralized funtions; loosely, we ignore isolated points where

E is nonzero, as long as suh points have zero integral, sinesuh isolated values are not physially observable. See e.g.Gelfand and Shilov, Generalized Funtions. 2


