
18.369 Problem Set 1Due Friday, 15 February 2007.Problem 1: Adjoints and operators(a) We de�ned the adjoint † of operators Ô by:
〈H1, ÔH2〉 = 〈Ô†H1, H2〉 for all H1 and H2in the ve
tor spa
e. Show that for a �nite-dimensional Hilbert spa
e, where H is a 
olumnve
tor hn (n = 1, · · · , d), Ô is a square d × dmatrix, and 〈H(1), H(2)〉 is the ordinary 
on-jugated dot produ
t ∑

n
h

(1)∗
n h

(2)
n , the aboveadjoint de�nition 
orresponds to the 
onjugate-transpose for matri
es.In the subsequent parts of this problem, youmay not assume that Ô is �nite-dimensional(nor may you assume any spe
i�
 formula forthe inner produ
t).(b) Show that if Ô is simply a number o, then

Ô† = o∗. (This is not the same as the previ-ous question, sin
e Ô here 
an a
t on in�nite-dimensional spa
es.)(
) If a linear operator Ô satis�es Ô† = Ô−1, thenthe operator is 
alled unitary. Show that a uni-tary operator preserves inner produ
ts (that is,if we apply Ô to every element of a Hilbert spa
e,then their inner produ
ts with one another areun
hanged). Show that the eigenvalues u of aunitary operator have unit magnitude (|u| = 1)and that its eigenve
tors 
an be 
hosen to beorthogonal to one another.(d) For a non-singular operator Ô (i.e. Ô−1 exists),show that (Ô−1)† = (Ô†)−1. (Thus, if Ô is Her-mitian then Ô−1 is also Hermitian.)Problem 2: Completeness(a) Prove that the eigenve
tors Hn of a �nite-dimensional Hermitian operator Ô (a d × dmatrix) are 
omplete: that is, that any d-dimensional ve
tor 
an be expanded as a sum

∑
n

cnHn in the eigenve
tors Hn with some 
o-e�
ients cn. It is su�
ient to show that thereare d linearly independent eigenve
tors Hn:(i) Show that every d × d Hermitian matrix
O has at least one nonzero eigenve
tor H1[... use the fundamental theorem of algebra:every polynomial with degree > 0 has atleast one (possibly 
omplex) root℄.(ii) Show that the spa
e of V1 =
{H | 〈H, H1〉 = 0} orthogonal to H1is preserved (transformed into itself or asubset of itself) by Ô. From this, show thatwe 
an form a (d − 1) × (d − 1) Hermitianmatrix whose eigenve
tors (if any) give (viaa similarity transformation) the remaining(if any) eigenve
tors of Ô.(iii) By indu
tion, form an orthonormal basis of
d eigenve
tors for the d-dimensional spa
e.(b) Completeness is not automati
 for eigenve
torsin general. Give an example of a non-singularnon-Hermitian operator whose eigenve
tors arenot 
omplete. (A 2× 2 matrix is �ne. This 
aseis also 
alled �defe
tive.�)(
) Completeness of the eigenfun
tions is not au-tomati
 for Hermitian operators on in�nite-dimensional spa
es either; they need to havesome additional properties (e.g. �
ompa
tness�)for this to be true. However, it is true of most op-erators that we en
ounter in physi
al problems.If a parti
ular operator did not have a 
ompletebasis of eigenfun
tions, what would this meanabout our ability to simulate the solutions on a
omputer in a �nite 
omputational box (where,when you dis
retize the problem, it turns ap-proximately into a �nite-dimensional problem)?No rigorous arguments required here, just yourthoughts.Problem 3: Maxwell eigenproblems(a) In 
lass, we eliminated E from Maxwell's equa-tions to get an eigenproblem in H alone, of the1



form Θ̂H(x) = ω
2

c
2 H(x). Show that if you in-stead eliminate H, you 
annot get a Hermitianeigenproblem in E ex
ept for the trivial 
ase

ε = 
onstant. Instead, show that you get a gen-eralized Hermitian eigenproblem: an equation ofthe form ÂE(x) = ω
2

c
2 B̂E(x), where both Â and

B̂ are Hermitian operators.(b) For any generalized Hermitian eigenproblemwhere B̂ is positive de�nite (i.e. 〈E, B̂E〉 > 0for all E(x) 6= 01), show that the eigenvalues(i.e., the solutions of ÂE = λB̂E) are real andthat di�erent eigenfun
tions E1 and E2 satisfy amodi�ed kind of orthogonality. Show that B̂ forthe E eigenproblem above was indeed positivede�nite.(
) Show that both the E and H formulations lead togeneralized Hermitian eigenproblems with real ωif we allow magneti
 materials µ(x) 6= 1 (butrequire µ real, positive, and independent of Hor ω).(d) µ and ǫ are only ordinary numbers for isotropi
media. More generally, they are 3 × 3 matri-
es (te
hni
ally, rank 2 tensors)�thus, in ananisotropi
 medium, by putting an applied �eldin one dire
tion, you 
an get dipole moment indi�erent dire
tion in the material. Show what
onditions these matri
es must satisfy for us tostill obtain a generalized Hermitian eigenprob-lem in E (or H) with real eigen-frequen
y ω.
1Here, when we say E(x) 6= 0 we mean it in the sense ofgeneralized fun
tions; loosely, we ignore isolated points where

E is nonzero, as long as su
h points have zero integral, sin
esu
h isolated values are not physi
ally observable. See e.g.Gelfand and Shilov, Generalized Fun
tions. 2


