
18.369 Midterm Exam (Spring 2008)

April 7, 2008

You have two hours.There are three problems, each
worth 30 points.

Problem 1: Waveguide Gaps

In figure 1(a) is shown a 2d hollow metallic waveguide of
widthL. If we solve for the 2d TM-polarized (Ez only,z-
invariant) eigensolutions in this geometry, they are of the
form:

Ez(x, y, t) = sin
(πn

L
y
)

ei(kx−ωt),

with n a positive integer and eigenfrequencies (bands)
ωn(k) =

√

k2 + (πn/L)2.
[Useful formulae: given a set of degenerate eigen-

modes{Eℓ} with an unperturbed eigenvalueω, orthonor-
malized so that〈Eℓ, εEm〉 = δℓ,m, then you should
recall that the first-order perturbations∆ω(1) due to a
small ∆ε are the eigenvalues of the matrixAℓm =
−ω

2 〈Eℓ,∆εEm〉. And the eigenvaluesλ of a 2 × 2 ma-

trix

(

a b
c d

)

are, of course, the roots ofλ2 − (a +

d)λ + (ad − bc) = 0. Some handy trig. identities:
2 cos2(u) = 1 + cos(2u), 2 sin2(u) = 1 − cos(2u),
2 sin(u) cos(v) = sin(u+ v) + sin(u− v).]

(a) Now, we will take this waveguide and fill it with a
small periodic (perioda) perturbation±∆ε as shown
in figure 1(b): alternating thicknessa/2 layers of
ε = 1 + ∆ε andε = 1 − ∆ε. Sketch the band
diagram, assuminga = L/2, by starting with the
“folded” bands forn = 1, 2, 3 (sketched reason-
ably quantitatively) and then showing qualitatively
(no calculations necessary) how they would change
for a small∆ε ≈ 0.1. (What happens when ann = 1
andn = 2 mode cross? What aboutn = 1 and
n = 3?)
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Figure 1: (a) Schematic of a 2d metal waveguide of width
L, which supports modes propagating along thex direc-
tion. (b) A perturbation±∆ε is introduced via two pe-
riodic layers of thicknessa/2 filling the waveguide. (c)
The perturbation is modified: for half of the thickness
(y ∈ [0, L/2]), the layers are shifted in thex direction
by a distanced.
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(b) Next, let us further change the perturbation as shown
in figure 1(c): for half of the waveguide (y ∈
[0, L/2]), the perturbation is shifted in thex direc-
tion by some distanced. Using first-order perturba-
tion theory,estimate the size of the lowest-ω gap
(to first-order in∆ε, as a fraction of mid-gap) that
opens atk = π/a in then = 1 band fortwo cases:
d = 0 andd = a/2. [Hint: you can use symmetry
to eliminate or simplify many of the integrals if you
choose yourx origin and unperturbed modes appro-
priately.]

(c) What is the space groupof the structure in fig-
ure 1(c) (including all rotations, mirrors, transla-
tions, etc.) for thetwo casesd = 0 andd = a/2?

Problem 2: Symmetry and Stuff

As shown in figure 2, we arrangeN identical massesm >
0 onto a circle, uniformly spaced, and attach each to its
neighbors by a spring constantκ > 0. The masses are
constrained to move along the circle, and the motion of
each mass is described by an angleφℓ as shown, where
φℓ = 0 corresponds to the initial position for massℓ.

If we assume a time-dependencee−iωt as usual, then
the frequenciesω satisfy the eigenproblem̂Θψ = ω2ψ,
whereψ = (φ1, φ2, · · · , φN )T andΘ̂ is theN ×N real-
symmetric positive-semi-definite matrix:

Θ̂ =
κ

m
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











(a) Obviously, the system in figure 2 is invariant under
CN rotations, corresponding to acyclic shift φ1 →
φ2, φ2 → φ3, . . . , φN−1 → φN , φN → φ1. Show
explicitly that thisΘ̂ commutes with cyclic shifts.

(b) LetD(n) be the representation matrix for a rotation
Cn

N (i.e. a cyclic shiftn times).What are the possi-
ble irreducible representationsfor this group (the
cyclic group of orderN )? [Hint: D(n)D(n′) =
D(?).]
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Figure 2:N identical massesm arranged on a circle, con-
nected with spring constantsκ, and allowed to slide freely
on the circle, whereφℓ denotes the angular displacement
of theℓ-th mass from its initial position (equally spaced).

(c) Using your answer from (b),solve for the eigenfre-
quenciesω and the corresponding eigenvectors.

(d) Using your answer from (b),give the projection op-
erator onto the irreducible representations. Also,
what does this operator become in the limitN →
∞?
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Figure 3: TM band diagram of a square lattice (lattice
constanta) of circular dielectric rods (right inset) plotted
around the boundary of the irreducible Brillouin zone (left
inset). Various points (black dots) are labelled with letters
(a–f) for future reference.

Problem 3: Projected Bands

The TM band diagram of a square lattice (lattice constant
a) of circular dielectric rods is shown in figure 3. In class,
we considered linear defects along theΓ–X direction (e.g.
removing a row of rods). Here, we will consider linear
defects along theΓ–M (diagonal) direction, with period
a
√

2 along that direction.

(a) Sketch the projected band diagramalong theΓ–
M direction: plotthe first two bandsof the periodic
crystal as a function of the componentkd of k along
this direction, for the irreducible Brillouin zone in
kd. On your plot,label with lettersa–f the points
corresponding to those labelled locations in figure 3.

(b) Sketch (qualitatively) your best guess forthe pro-
jected band diagram including the modesof a de-
fect whereN adjacent diagonal rows of rods are re-
moved (e.g. as shown in figure 4 forN = 3). Sketch
what happensasN increases, and in the limit as
N → ∞. You may assume that there areno surface
states for this crystal termination. [Hint: it might be
easier to start with theN → ∞ limit and then sketch

Figure 4: Linear defect in the diagonal (Γ–M) direction
of a square lattice of rods formed by removingN = 3
adjacent diagonal rows of rods (removed rods shown as
dashed outlines).

what happens asN decreases.]
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