18.369 Midterm Exam (Spring 2008)

April 7, 2008

You have two hoursThere are three problems, each
worth 30 points.

Problem 1: Waveguide Gaps (@) (metal) ]
—--- —--- YF

In figure 1(a) is shown a 2d hollow metallic waveguide of Y
width L. If we solve for the 2d TM-polarizedH, only, z- e=1
invariant) eigensolutions in this geometry, they are of the _ _X_ - y=0
form: . (metal)

E.(x,y,t) = sin (fy) elkrmwt),
with n a positive integer and eigenfrequencies (band_s()bz (metal) L
w(k) = /K2 + (an/L). = e

[Useful formulae: given a set of degenerate eigen--- alz  al2

modes{E,} with an unperturbed eigenvalug orthonor-
malized so thatE,,cE,,) = &, then you should ---- (metal) ----y=0
recall that the first-order perturbatiods.(!) due to a
small Ae are the eigenvalues of the matriA,,, =

—%(E, AcE,,,). And the eigenvalues of a2 x 2 ma- _(_Cz (metal) L
trix CCL Z are, of course, the roots of — (a + cee g2 a2 the Ae y=Li2
d)A + (ad — bc) = 0. Some handy trig. identities:... Ealzi Ea/2’ ﬁdf
2cos?(u) = 1+ cos(2u), 2sin®*(u) = 1 — cos(2u), ---- ----y=0

2sin(u) cos(v) = sin(u + v) + sin(u — v).] (metal)
(a) Now, we will take this waveguide and fill it with aFigure 1: (a) Schematic of a 2d metal waveguide of width
small periodic (period:) perturbationtAe as shown L, which supports modes propagating along thairec-
in figure 1(b): alternating thickness/2 layers of tion. (b) A perturbationtAce is introduced via two pe-
e =14+ Aecande = 1 — Ae. Sketch the band riodic layers of thickness/2 filling the waveguide. (c)
diagram, assuming: = L/2, by starting with the The perturbation is modified: for half of the thickness
“folded” bands forn = 1,2,3 (sketched reason-(y € [0, L/2]), the layers are shifted in the direction
ably quantitatively) and then showing qualitativelyy a distancel.
(no calculations necessary) how they would change
forasmallAe =~ 0.1. (What happens when an= 1
andn = 2 mode cross? What about = 1 and
n =37)



(b) Next, let us further change the perturbation as shown Ay
in figure 1(c): for half of the waveguidey( € o
[0, L/2]), the perturbation is shifted in the direc-
tion by some distancé. Using first-order perturba-
tion theory,estimate the size of the lowest gap
(to first-order inAe, as a fraction of mid-gap) that
opens ak = «n/a in then = 1 band fortwo cases
d = 0 andd = a/2. [Hint: you can use symmetry
to eliminate or simplify many of the integrals if you
choose your: origin and unperturbed modes appro-
priately.]

(c) What is the space groupof the structure in fig-
ure 1(c) (including all rotations, mirrors, transla-
tions, etc.) for thewo cases! = 0 andd = a/2?

Problem 2: Symmetry and Stuff

Figure 2: N identical masses: arranged on a circle, con-
As shown in figure 2, we arrangé identical masses: > nected with spring constants and allowed to slide freely

0 onto a circle, uniformly spaced, and attach each to RS the circle, where, denotes the angular displacement
neighbors by a spring constant> 0. The masses areOf thel-th mass from its initial position (equally spaced).

constrained to move along the circle, and the motion of

each mass is described by an angleas shown, where () ysing your answer from (b¥olve for the eigenfre-

¢¢ = 0 corresponds to the initial position for mass quenciesw and the corresponding eigenvectors
If we assume a time-dependence&“? as usual, then

the frequencies satisfy the eigenproble®y = w?y, (d) Using your answer from (byive the projection op-

wherey = (¢, ¢o, -+, dn) T and® is theN x N real- erator onto the irreducible representations. Also,
symmetric positive-semi-definite matrix: what does this operator become in the limitv- —
?
2 -1 0 - 0 -1 o
-1 2 -1 0 - 0
O — K o -1 2 -1 0
0 0 -1 2 -1
-1 0 0 -1 2

(a) Obviously, the system in figure 2 is invariant under
Cy rotations, corresponding togclic shift ¢; —

b2, g2 = @3, ..., ON—1 — ON, ON — ¢1. Show
explicitly that this© commutes with cyclic shifts

(b) Let D(n) be the representation matrix for a rotation
C?% (i.e. a cyclic shiftn times).What are the possi-
ble irreducible representationsfor this group (the
cyclic group of order N)? [Hint: D(n)D(n') =
D(?).]
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of a square lattice of rods formed by removing = 3
Figure 3: TM band diagram of a square lattice (latt adjacent diagonal rows of rods (removed rods shown as

C .
constantz) of circular dielectric rods (right inset) pIottedE ashed outlines).
around the boundary of the irreducible Brillouin zone (left
inset). Various points (black dots) are labelled with leste what happens a& decreases.]
(af) for future reference.

Problem 3: Projected Bands

The TM band diagram of a square lattice (lattice constant
a) of circular dielectric rods is shown in figure 3. In class,
we considered linear defects along feX direction (e.g.
removing a row of rods). Here, we will consider linear
defects along th&—-M (diagonal) direction, with period
a+/2 along that direction.

(a) Sketch the projected band diagramalong thel'-
M direction: plotthe first two bands of the periodic
crystal as a function of the componéntof k along
this direction, for the irreducible Brillouin zone in
kq. On your plot,label with lettersa—f the points
corresponding to those labelled locations in figure 3.

(b) Sketch (qualitatively) your best guess fahe pro-
jected band diagramincluding the modesf a de-
fect where N adjacent diagonal rows of rods are re-
moved (e.g. as shown in figure 4 fdr = 3). Sketch
what happensas N increases, and in the limit as
N — oco. You may assume that there an@surface
states for this crystal termination. [Hint: it might be
easier to start with th& — oo limit and then sketch



