
18.369 Problem Set 3

Due Monday, 12 March 2007.

Problem 1: Variational Theorem

Suppose that we have a generalized Hermitian
eigenproblem Â |ψ〉 = λB̂ |{〉ψ} on some Hilbert
space |ψ〉 with Â† = Â, B̂† = B̂, and B̂ positive-
definite.

(a) In class, during our “quick and dirty” proof
of the variational theorem, we relied on the
fact that a weighted average
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for wn ≥ 0 is always between minxn and
maxxn. Prove this (hint: use induction on
the number of terms in the sum).

(b) Derive the variational theorem via the
“quick and dirty” method as in class: as-
suming a complete basis of eigenstates |n〉
with eigenvalues λn, show that λmin ≤
F{|ψ〉} ≤ λmax for some functional F{|ψ〉}
and the minimum and maximum eigenval-
ues (if any) λmin and λmax. (For example,
if B̂ = 1 then we have an ordinary eigen-
problem, and F{|ψ〉} = 〈ψ|Â|ψ〉 / 〈ψ|ψ〉 as
in class.)

(c) Without using completeness, show that ex-
trema of your functional F{|ψ〉} only occur
when |ψ〉 is an eigenstate of the generalized
eigenproblem. Do this by the using prop-
erty that, at an extremum |ψ〉, the func-
tional must be stationary : that is, if we add
any small |δψ〉 to |ψ〉 at an extremum, the
change F{|ψ〉 + |δψ〉} − F{|ψ〉} is zero to
first order in |δψ〉. You should be able to
show that this stationary condition implies
that |ψ〉 satisfies the eigen-equation.

(d) Assume that we have a periodic struc-
ture ε and therefore the electric field E
can be chosen in the form of a Bloch
mode E = ei(k·x−ωt)Ek(x) for some Bloch
wavevector k, where Ek(x) is periodic. Use
the variational theorem for the generalized
eigenproblem, which you derived above, to
write an expression the minimum eigenvalue
ωmin(k) as the minimum of some space of
possible periodic field patterns Ek.

Problem 2: Guided modes in peri-
odic waveguides

In class, we showed by a variational proof that
any ε(y), in two dimensions, gives rise to at least
one guided mode whenever ε(y)−1 = ε−1

lo −∆(y)
for

∫
∆ > 0 and limy→±∞∆(y) = 0. At least,

we showed it for the TE polarization (H in the
ẑ direction). Now, you will show the same thing
much more generally, but using the same basic
technique.

(a) Let ε(x, y)−1 = 1 − ∆(x, y) be a pe-
riodic function ∆(x, y) = ∆(x + a, y),
with ∆ going to zero at y → ±∞ and∫ a

0

∫∞
−∞∆(x, y)dxdy > 0. Prove that at

least one TE guided mode exists, by choos-
ing an appropriate (simple!) trial function
of the form H(x, y) = u(x, y)eikxẑ . That is,
show by the variational theorem that ω2 <
ck2 for the lowest-frequency eigenmode. (It
is sufficient to show it for |k| < π/a, by pe-
riodicity in k-space.)

(b) Prove the same thing as in (a), but for
the TM polarization (E in the ẑ direction).
Hint: you will need to pick a trial function of
the form H(x, y) = [u(x, y)x̂ + v(x, y)ŷ]eikx

where u and v are some (simple!) functions
such that ∇ ·H = 0.1

Problem 3: 2d Waveguide Modes

Consider the two-dimensional dielectric waveg-
uide of thickness h that we first introduced in
class:

ε(y) =
{
εhi |y| < h/2
εlo |y| ≥ h/2 ,

where εhi > εlo. Look for solutions with the
“TM” polarization E = Ez(x, y)ẑe−iωt. The
boundary conditions are that Ez is continuous
and ∂Ez/∂y (∼ Hx) is continuous, and that we
require the fields to be finite at x, y → ±∞,

(a) Prove that we can set εlo = 1 without loss
of generality, by a change of variables in

1You might be tempted, for the TM polarization, to
use the E form of the variational theorem that you de-
rived in problem 1, since the proof in that case will
be somewhat simpler: you can just choose E(x, y) =
u(x, y)eikxẑ and you will have ∇ · εE = 0 automati-
cally. However, this will lead to a slightly weaker con-
dition

∫
(ε− 1) > 0 instead of

∫
∆ =

∫
ε−1

ε
> 0.

1



Maxwell’s equations. In the subsequent sec-
tions, therefore, set εlo = 1 for simplicity.

(b) Find the guided-mode solutions Ez(x, y) =
eikxEk(y), where the corresponding eigen-
value ω(k) < ck is below the light line.

(i) Show for the |y| < h/2 region the so-
lutions are of sine or cosine form, and
that for |y| > h/2 they are decaying
exponentials.

(ii) Match boundary conditions (Ez and
Hx are continuous) at y = ±h/2 to
obtain an equation relating ω and k.
You should get a transcendental equa-
tion that you cannot solve explicitly.
However, you can “solve” it graphically
and learn a lot about the solutions—
in particular, you might try plotting
the left and right hand sides of your
equation (suitably arranged) as a func-

tion of k⊥ =
√

ω
c2

2εhi − k2, so that you
have two curves and the solutions are
the intersections.

(iii) From the graphical picture, derive an
exact expression for the number of
guided modes as a function of k. Show
that there is exactly one guided mode,
with even symmetry, as k → 0, as we
argued in class.

Problem 4: Numerical computa-
tions with MPB

For this problem, you will gain some initial expe-
rience with the MPB numerical eigensolver de-
scribed in class, and which is available on Athena
in the meep locker. Refer to the class hand-
outs, and also to the online MPB documenta-
tion at jdj.mit.edu/mpb/doc. For this problem,
you will study the simple 2d dielectric waveg-
uide (with εhi = 12) that you analyzed analyti-
cally above, along with some variations thereof—
start with the sample MPB input file (2dwaveg-
uide.ctl) that was introduced in class and is avail-
able on the course web page.

(a) Plot the TM (Ez) even modes as a function
of k, from k = 0 to a large enough k that
you get at least four modes. Compare where
these modes start being guided (go below

the light line) to your analytical prediction
from problem 1. Show what happens to this
“crossover point” when you change the size
of the computational cell.

(b) Plot the fields of some guided modes on a
log scale, and verify that they are indeed ex-
ponentially decaying away from the waveg-
uide. (What happens at the computational
cell boundary?)

(c) Modify the structure so that the waveguide
has ε = 2.25 instead of air on the y < −h/2
side. Show that there is a low-ω cutoff for
the TM guided bands, as we argued in class,
and find the cutoff frequency.

(d) Create the waveguide with the following
profile:

ε(y) =

 2 0 ≤ y < h/2
0.8 − h/2 < y < 0

1 |y| ≥ h/2
.

Should this waveguide have a guided mode
as k → 0? Show numerical evidence to sup-
port your conclusion (careful: as the mode
becomes less localized you will need to in-
crease the computational cell size).
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