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Figure 1: Symmetry operations, and in particular the
mirror symmetriesσ andσ′ and the60◦ rotationC6,
for the hexagon symmetry group (C6v).

18.369 Mid-term Solutions

Problem 1: Hexagons (30 points)

(a) The symmetry operations, as summarized in
Fig. 1, are:E (the identity), 3 mirror planesσk

bisecting sides, 3 mirror planesσ′
k bisecting

corners,C6 andC−1
6 , C2

6 = C3 andC−1
3 , and

C3
6 = C2—and these are also the 6 conjugacy

classes. The character table is therefore:

C6v E 2C6 2C3 C2 3σ 3σ′

Γ1 1 1 1 1 1 1
Γ2 1 1 1 1 −1 −1
Γ3 1 −1 1 −1 1 −1
Γ4 1 −1 1 −1 −1 1
Γ5 2 −1 −1 2 0 0
Γ6 2 1 −1 −2 0 0

Here, we have used several of the usual
facts to fill in the table. The number of repre-
sentations must equal the number of conjugacy
classes (6). The sum of the squares of the
first column (the dimensions) must equal the
number of elements in the group (12), which
sets the first column. The first row must be the
trivial representation (all1’s). Subsequent rows
must be orthogonal to this (and the columns
must also be orthogonal).
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Figure 2: Projection operation forC6v acting on a
function f(x, y) = 1 in the small region shown at
upper right, and zero elsewhere. The decomposi-
tions are labelled in terms of partner functions of the
irreducible representationsΓ1 to Γ5 from the table.
Here, “+” and “−” by themselves refer to+1 and
−1, respectively.

However, there is still an ambiguity after all of
these conditions—if you look at the table above,
the 2C6 and 2C3 columns could be swapped
without breaking the orthogonality, and the
table wouldnotbe the equivalent (in contrast, if
we swapped the3σ and3σ′ columns, the table
would be equivalent withΓ3 andΓ4 swapped).
To resolve this ambiguity, it turns out that we
need the final rule from the handout, about
the product of character classes. In particular,
{C6, C

−1
6 }·{C2, C

−1
2 } = {C6, C

−1
6 }+2{C2},

just multiplying out the elements and counting
how many times they appear. Then, if we
look at theΓ3 row of the table, this means
that (−1) · (1) · {C6, C

−1
6 } · {C2, C

−1
2 } =

(−1){C6, C
−1
6 } + 2 · (−1){C2}, substituting

the various characters according to the formula
in the handout, and this works (both sides are
multiplied by−1). However, if we had swapped
the2C6 and2C3 columns, we would have got-
ten (1) · (−1) · {C6, C

−1
6 } · {C2, C

−1
2 } 6=

(1){C6, C
−1
6 } + 2 · (−1){C2}, ruling out this

possibility. As this ambiguity is rather subtle,
and we didn’t discuss the final rule on the
handout in class, I didn’t take off points if you
failed to notice/resolve it.

(b) This is shown in Fig. 2, using the proejction op-
erator based on the character table above. Note
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the normalization factors; we have pulled a fac-
tor of 1

|G| = 1
12 from the projection operator

over to the left-hand side.

(c) The cases are:

(i) Yes. This has the fullC6v symmetry
group, which we expect to have non-
accidental degeneracies since it has two
2 × 2 irreducible representations from
above.

(ii) No. Rotating the inner hexagon
by 15◦ breaks the mirror symme-
tries, so our remaining group is
{E, C6, C

2
6 , C3

6 , C4
6 , C5

6}, which is
commutative (it is the cyclic group of
order 6). Because it is commutative,
every element of the group is in its own
conjugacy class. Thus we have six1 × 1
irreducible representations, and there can
be no non-accidental degeneracies.

(iii) No. The symmetry group is only
{E, C2, σ1, σ

′
2}, which again will have 4

conjugacy classes and four1 × 1 irre-
ducible representations.

(iv) Yes. This structure has the symmetry
groupC3v, which we saw in homework
has a2× 2 irreducible representation, and
therefore we expect non-accidental degen-
eracies.

Problem 2: Band Diagrams (30 points)

What Calvin has forgotten is that, with Bloch’s theo-
rem, the periodicity ink is determined by the choice
of unit cell—if you employ a supercell, a periodic-
ity larger than the minimum, then this leads to a la-
belling k that is “folded” onto the smaller Brillouin
zone of the new unit cell.

In particular, the point(kx, 0, 0) in thesecondcal-
culation (where they direction has a non-zero peri-
odicity a and thus a finite Brillouin zone2π/a in the
y direction) corresponds to the points(kx, 2πn

a
, 0),

for all integersn, in thefirst calculation (where the
y direction has zero periodicity and thus an infinite
Brillouin zone where allky are distinct). The results
are shown in Fig. 3.

For the 1d unit cell, shown in Fig. 3(top), we
see the usual 1d quarter-wave band diagram of non-
degenerate bands (considering the TM polarization
only). Because the index contrast is so low, the bands
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Figure 3: Band diagrams of quarter-wave stack (ε =
1.1/1). Top: 1d unit cell.Bottom:2d unit cell (super-
cell), showing 1d bands (red) and double-degenerate
folded bands fromky = 2πn

a
for n 6= 0 (blue).
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arenearlythe folded bands fromε ≈ 1.05 (the mean
ε). A small gap opens up atkx = π/a, centered on
ωa/2πc = 0.4884. There is no gap atkx = 0, due
to the peculiar accidental degeneracy of the quarter-
wave stack at this point.

For thea×a unit cell, we see two kinds of bands in
Fig. 3(bottom). First, the (non-degenerate) bands of
the 1d unit cell (n = 0) are still solutions, of course,
shown in red. The first folded band is forn = 1, cor-
responding to the lowest band atky = ± 2π

a
. Since

this isnearlya homogeneous system, we expect this
band to benearly ω ≈ c

√

k2
x + (±2π/a)2, which

is doubly-degenerate, curved, and is almost degen-
erate with the 1d bands atkx = 0 (a little below
ωa/2πc = 1) and atkx = 0.5π

a
should be a little

below
√

0.52 + 1 = 1.12. In fact, the first 3 folded
bands correspond to the first 3 bands atn = ±1,

with frequenciesω ≈ c
√

(kx + ℓ 2π
a

)2 + (±2π/a)2

for ℓ = 0,−1, 1. Thus, the 2nd and 3rd folded bands
at kx = 0 should be atω ≈

√
2. It’s hard to tell

on this plot because the index contrast is so low, but
thereis a gap in the folded bands atkx = 0, since
we are no longer satisfying the quarter-wave condi-
tion whenky 6= 0. For the 4th folded band, there is a
crossing between two bands: first, the 4th band(s) at

n = ±1, with ω ≈ c
√

(kx − 2 2π
a

)2 + (±2π/a)2;
and second, the 1st band atn = ±2, with ω ≈
c
√

k2
x + (±4π/a)2. The latter is lower (ω ≈ 2

vs. ω ≈
√

5) at kx = 0, and the former is lower
(ω ≈

√
13
2 vs. ω ≈

√
17
2 ) atkx = π/a. No bands are

more than 2-fold degenerate (except at points where
they cross, of course).

Problem 3: Operators (30 points)

(a) In general, at eachω we have a different Her-
mitian operator̂Θ(ω). All of the properties of
Hermitian operators apply tothat operator, too.
The only things thatdon’t apply are relation-
ships between modes atdifferentω, since dif-
ferentω have different operators. In particular:

(i) ω is real: still true. Real eigenvalues
λ = ω2/c2 only depended on the fact that
〈H |Θ̂(ω)|H〉 = λ∗ 〈H |H〉 = λ 〈H |H〉,
from the fact thatΘ̂ is Hermitian and so
we can operate it either to the left or to the
right. And from the fact that we have real
eigenvalues, realω follows from the fact
that Θ̂ is positive semi-definite, which is

still true sinceε > 0 was given.

(ii) the solutionsH can be chosen to trans-
form as irreducible representations of the
space group:still true. Our proof of this
only depended on the degenerate modes
at asinglefrequencyω, and therefore still
holds.

(iii) ω 6= ω′ implies that
∫

H
∗ · H′ = 0: no

longer true. Two modes at different fre-
quencies now satisfy different eigenprob-
lems, and therefore have no orthogonality
relationship.

(b) We can derive this most simply by taking the or-
dinary perturbation-theory expression, derived
in class, and substituting∆ε = ∂ε

∂p
∆p +

∂ε
∂ω

dω
dp

∆p + O(∆p2), obtaining:

∆ω = −ω

2

∫

( ∂ε
∂p

+ ∂ε
∂ω

dω
dp

)|E|2
∫

ε|E|2 ∆p + O(∆p2).

We then divide both sides by∆p and take the
limit ∆p → 0 to get the derivativedω/dp, as in
our previous derivation. However, we now have
two terms in whichdω/dp appears: one on the
left-hand side, and one in the numerator on the
right-hand side. Solving fordω/dp, we obtain:

dω

dp
= −ω

2

∫

∂ε
∂p
|E|2

∫

ε|E|2 +
∫

ω
2

∂ε
∂ω

|E|2

= −ω

∫

∂ε
∂p
|E|2

∫ d(ωε)
dω

|E|2 +
∫

|H|2
.

In the last expression, we have used the fact
that

∫

|H|2 =
∫

ε|E|2 to write the result in
a suggestive form. If we interpret the denom-
inator as the energy in the field, then we see
that the energy density in the electric field for
a dispersive medium (with negligible loss) must
be d(ωε)

dω
|E|2. Exactly this result is derived (in

a more explicit way) in, e.g., Jackson,Classi-
cal Electrodynamics. Note that in the case of
∂ε
∂ω

= 0 we obtain the usual result, of course.
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