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It is a remarkable fact [1] that Maxwell’s equations
underany coordinate transformation can be written
in an identical “Cartesian” form, if simple transfor-
mations are applied to the materials (ε andµ), the
fields (E andH), and the sources (ρ andJ). This
result has numerous useful and/or beautiful conse-
quences, from designs of “invisibility cloaks” [2],
to a simple derivation of PML absorbing boundaries
[3], to enabling analyses of bent and twisted waveg-
uides in terms analogous to a quantum Stark effect
[4] , to providing a simple way of applying numer-
ical methods designed for Cartesian coordinates to
other coordinate systems [1].

Here, we review the proof in a compact form, gen-
eralized to arbitrary anisotropic media. (Most previ-
ous derivations seem to have been for isotropic me-
dia in at least one coordinate frame [1], or for coordi-
nate transformations with purely diagonal Jacobians
J whereJii depends only onxi [3], or for constant
affine coordinate transforms [5].)

Summary of the Result

Maxwell’s equations in Cartesian coordinatesx are
written (in natural unitsε0 = µ0 = 1):

∇× H = ε
∂E

∂t
+ J (1)

∇× E = −µ
∂H

∂t
(2)

∇ · (εE) = ρ (3)

∇ · (µH) = 0, (4)

whereJ andρ are the usual free current and charge
densities, respectively, andε(x) and µ(x) are the
3 × 3 relative permittivity and permeability tensors,
respectively. Now, suppose that we make some (dif-
ferentiable) coordinate transformationx 7→ x

′ (usu-
ally chosen to be non-singular, with some exceptions

[2]). Let J denote the3 × 3 Jacobian matrix:

Jij =
∂x′

i

∂xj

.

We will show that Maxwell’s equations take on the
same form (1–4) in the primed coordinate system,
with ∇ replaced by∇′, if we make the transforma-
tions:

E
′ = (J T )−1

E, (5)

H
′ = (J T )−1

H, (6)

ε
′ =

J εJ
T

detJ
, (7)

µ
′ =

J µJ
T

det J
, (8)

J
′ =

J J

detJ
, (9)

ρ′ =
ρ

det J
, (10)

whereJ
T is the transpose.

Note that, even if we start out with isotropic mate-
rials (scalarε andµ), after a coordinate transforma-
tion we in general obtainanisotropic materials (ten-
sorsε′ andµ

′).
For example, ifx′ = sx for some scale factor

s 6= 0, thenε
′ = ε/s andµ

′ = µ/s, which is pre-
cisely the material scaling required to keep e.g. the
eigenfrequencies fixed under a rescaling of a struc-
ture. Note also that ifs = −1, i.e. a coordinate in-
version, then we setE′ = −E, H′ = −H, ε

′ = −ε

and µ
′ = −µ, and the system switches “handed-

ness” (flipping the sign of the refractive index). [A
more common alternative choice in that case would
be to setH′ = H, transformingH as a pseudovector
[6], while keepingε andµ unchanged. This corre-
sponds to sprinkling a few factors ofsign(det J ) in
the above equations, which we are free to do as long
as the sign is constant.]
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Proof

We will proceed in index notation, employing the
Einstein convention whereby repeated indices are
summed over. Eq. (1) is now expressed:

∂aHbǫabc = εcd

∂Ed

∂t
+ Jc (11)

whereǫabc is the usual Levi-Civita permutation ten-
sor and∂a = ∂/∂xa. Under a coordinate change

x 7→ x
′, if we let Jab =

∂x′

a

∂xb

be the (non-singular)
Jacobian matrix associated with the coordinate trans-
form (which may be a function ofx), we have

∂a = Jba∂′

b. (12)

Furthermore, as in eqs. (5–6), let

Ea = JbaE′

b, (13)

Ha = JbaH ′

b. (14)

Hence, eq. (11) becomes

Jia∂′

iJjbH
′

jǫabc = εcdJld

∂E′

l

∂t
+ Jc. (15)

Here, theJia∂′

i = ∂a derivative falls on both theJjb

andH ′

j terms, but we can eliminate the former thanks
to theǫabc: ∂aJjbǫabc = 0 because∂aJjb = ∂bJja.
Then, again multiplying both sides by the Jacobian
Jkc, we obtain

JkcJjbJia∂′

iH
′

jǫabc = JkcεcdJld

∂E′

l

∂t
+ JkcJc

(16)
Noting thatJiaJjbJkcǫabc = ǫijk detJ by defini-
tion of the determinant, we finally have

∂′

iH
′

jǫijk =
1

detJ
JkcεcdJld

∂E′

l

∂t
+

JkcJc

detJ
(17)

or, back in vector notation,

∇′ × H
′ =

J εJ
T

det J

∂E
′

∂t
+ J

′, (18)

whereJ
′ = J J/ detJ according to (9). Thus, we

see that we can interpret Ampere’s Law in arbitrary
coordinates as the usual equation in Euclidean coor-
dinates, as long as we replace the materials etc. by
eqs. (5–7). By an identical argument, we obtain

∇′ × E
′ = −

J µJ
T

detJ

∂H
′

∂t
, (19)

which yields the transformation (8) forµ.
The transformation of the remaining divergence

equations into equivalent forms in the new coordi-
nates is also straightforward. Gauss’ Law, eq. (3),
becomes

ρ = ∂aεabEb = Jia∂′

iεabJjbE
′

j

= Jia∂′

i(detJ )J −1

ak ε′kjE
′

j

= (detJ )∂′

iε
′

ijE
′

j + (∂aJ
−1

ak detJ )ε′kjE
′

j

= (detJ )∂′

iε
′

ijE
′

j , (20)

which gives∇′ · (ε′
E

′) = ρ′ for ρ′ = ρ/ detJ , cor-
responding to eq. (10). Similarly for eq. (4). Here,
we have used the fact that

∂aJ
−1

ak detJ = ∂aǫanmǫkijJinJjm/2 = 0, (21)

from the cofactor formula for the matrix inverse, and
recalling that∂aJjbǫabc = 0 from above. In partic-
ular, note thatρ = 0 ⇐⇒ ρ′ = 0 andJ = 0 ⇐⇒

J
′ = 0, so a non-singular coordinate transformation

preserves the absence (or presence) of sources.
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