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Itis aremarkable fact [1] that Maxwell's equation§2]). Let J denote the3 x 3 Jacobian matrix:
underany coordinate transformation can be written ,
in anidentical “Cartesian” form, if simple transfor- T = 3171-_
mations are applied to the materiatsgnd p), the Y Ox;
fields (E and H), and the sources(andJ). This

result has numerous useful and/or beautiful conai¥® Will show that Maxwell's equations take on the
quences, from designs of “invisibility cloaks” [2],$ame form (1-4) in the primed coordinate system,

to a simple derivation of PML absorbing boundarie¥ith v replaced byV’, if we make the transforma-

[3], to enabling analyses of bent and twisted WaveB(-)nS' , 1
uides in terms analogous to a quantum Stark effect E'=(J7)E, ()
[4] , to providing a simple way of applying numer- H = (77)"'H (6)
ical methods designed for Cartesian coordinates to ’
other coordinate systems [1]. o TeT” )
Here, we review the proof in a compact form, gen- ~ det g’
eralized to arbitrary anisotropic media. (Most previ- T
ous derivations seem to have been for isotropic me- - Tund , (8)
diain at least one coordinate frame [1], or for coordi- det J
nate transformations with purely diagonal Jacobians JJ
== 9
j_wherej“-.depends only om; [3], or for constant T det T’ ©)
affine coordinate transforms [5].)
r=_F_ 10
P =T (10)
whereJ* is the transpose.
Summary of the Result here.7 " is th P

Note that, even if we start out with isotropic mate-
rials (scalar andy), after a coordinate transforma-
tion we in general obtaianisotropic materials (ten-
sorse’ andy/).

OE For example, ifx’ = sx for some scale factor
VxH = e—+17J (1) s # 0, thene’ = /s andp’ = p/s, which is pre-
ot cisely the material scaling required to keep e.g. the

Maxwell’s equations in Cartesian coordinatesre
written (in natural unitgy = o = 1):

VxE = _H8_H (2) eigenfrequencies fixed under a rescaling of a struc-
ot ture. Note also that if = —1, i.e. a coordinate in-
V-(eE) = p () version, thenwe sdf’ — —E, H' = —H, ¢/ — —¢
V. (pkH) = 0, (4) andp/ = —p, and the system switches “handed-

ness” (flipping the sign of the refractive index). [A
whereJ andp are the usual free current and chargmore common alternative choice in that case would
densities, respectively, andx) and u(x) are the be to sefl’ = H, transformingH as a pseudovector
3 x 3 relative permittivity and permeability tensors|6], while keepinge and . unchanged. This corre-
respectively. Now, suppose that we make some (déponds to sprinkling a few factors sign(det J) in
ferentiable) coordinate transformatien— x’ (usu- the above equations, which we are free to do as long
ally chosen to be non-singular, with some exceptioas the sign is constant.]



Pr oof which yields the transformation (8) fou.

The transformation of the remaining divergence
We will proceed in index notation, employing thequations into equivalent forms in the new coordi-
Einstein convention whereby repeated indices afgtes is also straightforward. Gauss’ Law, eq. (3),

summed over. Eqg. (1) is now expressed: becomes
OF, = Oatab By = TiaOjar Tj E}
8aI{bEabc = Ecd—d + Jc (11) P Fab j i bJ]b !
ot = Jia0}(det )T el B
wheree. is the usual Levi-Civita permutation ten- = (det j)al(g;jE;. + (aaja—kl det j)g;w.E-;
sor andd, = 0/0x,. Ugg/er a coordinate change (det T)dle! !, (20)

x — x/, if we let 7o, = 7.2 be the (non-singular) .
Jacobian matrix associated with the coordinate tranglich givesV’ - (e'E’) = o' for o’ = p/ det T, cor-

form (which may be a function af), we have responding to eq. (10). Similarly for eq. (4). Here,
we have used the fact that

aajg?gl det J = aaeanmekij%nn]jm/Q =0, (21)

Furthermore, as in egs. (5-6), let from the cofactor formula for the matrix inverse, and
_ , recalling thatd, Jjyeqs. = 0 from above. In partic-
Ba = jb“Eb/’ (13) ular, note thap = 0 <= p' = 0 andJ = 0 <—
H, = JpaHy. (14) 3 = 0, so a non-singular coordinate transformation
preserves the absence (or presence) of sources.

aa = jbaal/)- (12)

Hence, eq. (11) becomes
/A
Jia0iTjpHeabe = scdjld% +J.. @5 References
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