
18.369 Problem Set 5 Solutions

Problem 1: Group Velocity and Material Dispersion (20 points)
First, little bit of background info (you were not required to show this):

• We now technically have a “nonlinear eigenproblem” Θ̂k(ω)Hk = ω2Hk, in which the eigen-operator
Θ̂k depends on the eigenvalue ω2. But if ε(ω) is still real, Θ̂k is still Hermitian. Our proof of real
eigenvalues and positive-definiteness still work, so ω is still real. (But our proof of orthogonality
of eigenfunctions no longer works, since eigenfunctions at distinct eigenvalues now have different
operators Θ̂k.)

• The derivation of first-order perturbation theory (from which we got dω/dk) carries through exactly
as before, except that you now need to include an additional perturbation ∂ Θ̂

∂ω
∆ω in the operator due

to the change in the eigenvalue. This is what gives us the “chain rule” term you were asked to include
in dω/dk.

With that in mind, let’s go ahead and solve the problem. As in class, we’ll just set c = ε0 = µ0 = 1 so that
we don’t have to deal with all of those annoying SI constant factors. (The book does it in SI units if you are
curious.)

The derivation of group velocity is the same as in class, except that there is now an extra term in the
numerator of the Hellman-Feynman theorem. In class, we dealt with the ∂ Θ̂k

∂k term and showed that it gave
2ω multipled by the flux (the integral of the time-averaged Poynting vector S = 1

2 Re[E∗×H]). Now we

have an additional term ∂ Θ̂

∂ε
· dε

dω
· vg. The ∂ Θ̂

∂ε
, however is precisely what we would get for a ∆ε = dε

dω
· vg

perturbation like when we first derived perturbation theory (we get−∆ε

ε2 |∇×H|2 =−ω2∆ε|E|2). Therefore,

this term of the numerator becomes −ω2

c2 〈E,( dε

dω
·vg)E〉. In short, we have exactly the expression from class

with the addition of this new term:

vg =
1

2ω
·

4ω
∫

S−ω2vg
∫
|E|2 dε

dω

1
2
∫
(|H|2 + ε|E|2)

=
2
∫

S− ω

2 vg
∫
|E|2 dε

dω

1
2
∫
(|H|2 + ε|E|2)

.

(Note that, in the denominator, we have used (as in class) the fact that
∫
|H|2 =

∫
ε|E|2, which is still true

for dispersive media—our derivation from class only relied on ∇×E = i ω

c H and ∇×H = −i ω

c εE.) Now,
however, we have vg on both sides of the equation, so we must solve for it, and obtain:

vg =

∫
S

1
4
∫
(|H|2 + ε|E|2 +ω

dε

dω
|E|2)

=

∫
S

1
4
∫ [
|H|2 + d(ωε)

dω
|E|2

]
as desired: the Poynting flux divided by the Brillouin energy density of a lossless dispersive medium, both
time-averaged and averaged over the unit cell.

A more complete derivation of this can be found in Appendix A of Welters et al., “Speed-of-light limi-
tations in passive linear media,” Physical Review A, vol. 90, p. 023847 (2014).

Problem 2: Fabry-Perot waveguides (10+10 points)
(a) Here, we modified bandgap1d.ctl to vary ky by setting the k-points variable as:

(define-param k-interp 30)
(define-param kx 0)
(define-param ky-max 2)
(set! k-points (interpolate k-interp (list (vector3 kx 0) (vector3 kx ky-max)))

In figure 1 we show the TM projected band diagram for kx from 0.0 to 0.5 in steps of 0.1 (in units of
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Figure 1: TM projected band diagram, vs. ky for ε = 12/2.25 quarter-wave stack along the x direction. kx
varies from 0 (red) to π/a (blue), and the region corresponding to intermediate kx values is shaded gray. The
light line of air (ω = cky) is shown as a thick black line.

2π/a). We also shade (in gray) the region from kx = 0.0 to kx = 0.5 (the red and blue lines), and it is
clear that all of the intermediate kx values do indeed lie between these two curves.

(b) Here, the defect1d.ctl file is modified similarly to the bandgap1d.ctl file to use ε2 = 2.25 and to com-
pute the bands as a function of ky. (Since it is a supercell, we just use a fixed kx = 0, as kx should
become irrelevant as the supercell size grows.)

Changing a single ε2 layer by ∆ε = 4, the resulting TM band diagram is shown in figure 2, over-
laid on top of the shaded regions from the previous problem. Most of the bands fall into the shaded
regions, corresponding to extended modes. A few discrete guided bands lie within the open regions,
however, corresponding to waveguided modes. There are both gap-guided modes, within the band
gaps, and a couple of index-guided modes, which lie below the lowest continuum regions. The latter
may come as something of a surprise, since our defect still has lower ε than the ε = 12 layers, but
you can think of them in the same sense as “surface states” associated with the ε = 12 layers next to
the defect—it is the combination of the defect and the adjacent ε = 12 layers that supports the index-
guided modes, which are asymptotically localized just in the ε = 12 layers.

(Note that there are some bands just slightly at the edge of the shaded region. This is due simply
to numerical error—finite resolution and supercell size—which causes the extended modes to have
slightly differerent frequencies in defect1d.ctl compared to bandgap1d.ctl.)
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Figure 2: TM projected band diagram for ∆ε2 = 4 Fabry-Perot defect mode as a function of the ky (parallel
to the quarter-wave stack, which has period a).
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