
18.369 Problem Set 4
Due Friday, March 23, 2016.

Problem 1: Perturbation theory
In class, we derived the 1st-order correction in the
eigenvalue for an ordinary Hermitian eigenproblem
Ôψ = λψ for a small perturbation ∆Ô. Now, do the
same thing for a generalized Hermitian eigenprob-
lem Âψ = λ B̂ψ .

(a) That is, assume we have the solution Â(0)ψ(0) =
λ (0)B̂(0)ψ(0) to an unperturbed system (where
Â(0) and B̂(0) are Hermitian, and B̂(0) is positive-
definite) and find the first-order correction λ (1)

when we change both Â and B̂ by small amounts
∆Â and ∆B̂. You may assume that λ (0) is non-
degenerate, for simplicity.

(b) Now, apply this solution to the generalized
eigenproblem ∇×∇×E = ω2

c2 εE for a small
change ∆ε , and show that the first-order correc-
tion ∆ω is the same as the one derived in class
(and given in chapter 2 of the book) using the H
eigenproblem.

(c) In chapter 4 of the book, it is claimed that the ra-
tio of the first gap ∆ω to the mid-gap frequency
ωm of a 1d photonic crystal with materials ε

(thickness a− d) and ε + ∆ε (thickness d) is,
to first order in ∆ε/ε:

∆ω

ωm
≈ ∆ε

ε
· sin(πd/a)

π
.

Reproduce this formula using perturbation the-
ory applied to the k = ±π/a eigenfunctions
sin(πx/a) and cos(πx/a) of a homogeneous
medium ε , as outlined in class.

Problem 2: Bands and supercells
Note: this problem does not require you to do any
numerical calculations. Just sketches and thought.

Calvin Q. Luss, a Harvard student, posts to the
MPB mailing list that he has discovered a bug in
MPB. He writes:

I’m getting ready to do a 2d-crystal
calculation, but first I wanted to do a 1d
crystal as a test case since I know the
band diagram analytically for that (from
Yeh’s book). I used the structure shown
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Figure 1: (For problem 3.) Two MPB unit cells for
the band structure of a 1d-periodic structure: (i) a 1d
a×no-size unit cell (ii) a 2d a×a unit cell.

in fig. 1(i), with a 1d computational cell
of a×no-size×no-size, and plotted the
TM band structure ω(kx) (for k = (kx,0,0)
with kx from 0 to 0.5 in MPB units, i.e.
from 0 to π/a)—everything works fine!
Then I do the same calculation but with a
computational cell of a× a×no-size, as
shown in fig. 1(ii), and the result is wrong!
I get all sorts of extra bands at bogus fre-
quencies; why doesn’t the result match the
1d computation, since the structure hasn’t
changed? I think it must be a bug; you MIT
people obviously don’t know what you’re
doing.

Sketch the plots that Calvin got from his two calcu-
lations, and explain why MPB is correctly answering
exactly the question that he posed. Sketch at least 4
bands in the 1d calculation, and at least 6 bands in the
2d calculation (not counting degeneracies), and label
any bands that are doubly (or more?) degenerate.

(You can use the fact that the ε contrast in this
case is only 10%—the structure is nearly homoge-
neous—to help you sketch out the bands more quan-
titatively. But no need to be too quantitative, how-
ever: you don’t need to use perturbation theory or
anything like that; a reasonable guess is sufficient.)

Problem 3: Band gaps in MPB

Consider the 1d periodic structure consisting of
two alternating layers: ε1 = 12 and ε2 = 1, with
thicknesses d1 and d2 = a− d1, respectively. To
help you with this, I’ve created a sample input file
bandgap1d.ctl that is posted on the course web page.
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(a) Using MPB, compute and plot the fractional
TM gap size (of the first gap, i.e lowest ω)
vs. d1 for d1 ranging from 0 to a. What d1
gives the largest gap? Compare to the “quarter-
wave” thicknesses d1,2 = a

√
ε2,1/[

√
ε1 +

√
ε2]

(see section “size of the band gap” in chapter 4
of the book).

(b) Given the optimal parameters above, what
would be the physical thicknesses in order for
the mid-gap vacuum wavelength to be λ =
2πc/ω = 1.55µm? (This is the wavelength
used for most optical telecommunications.)

(c) Plot the 1d TM band diagram for this structure,
with d1 given by the quarter wave thickness,
showing the first five gaps. Also compute it
for d1 = 0.12345 (which I just chose randomly),
and superimpose the two plots (plot the quarter-
wave bands as solid lines and the other bands as
dashed). What special features does the quarter-
wave band diagram have?

Problem 4: Defect modes in MPB
In MPB, you will create a (TM polarized) defect
mode by increasing the dielectric constant of a single
layer by ∆ε , pulling a state down into the gap. The
periodic structure will be the same as the one from
problem 4 from pset 3, with the quarter-wave thick-
ness d1 = 1/(1+

√
12). To help you with this, I’ve

created a sample input file defect1d.ctl that is posted
on the course web page.

(a) When there is no defect (∆ε), plot out the band
diagram ω(k) for the N = 5 supercell, and show
that it corresponds to the band diagram of prob-
lem 3 “folded” as expected.

(b) Create a defect mode (a mode that lies in the
band gap of the periodic structure) by increasing
the ε of a single ε1 layer by ∆ε = 1, and plot the
Ez field pattern. Do the same thing by increas-
ing a single ε2 layer. Which mode is even/odd
around the mirror plane of the defect? Why?

(c) Gradually increase the ε of a single ε2 layer, and
plot the defect ωas a function of ∆ε as the fre-
quency sweeps across the gap. At what ∆ε do
you get two defect modes in the gap? Plot the
Ez of the second defect mode. (Be careful to in-
crease the size of the supercell for modes near
the edge of the gap, which are only weakly lo-
calized.)

(d) The mode must decay exponentially far from
the defect (multiplied by an ei π

a x sign oscillation
and the periodic Bloch envelope, of course).
From the Ez field computed by MPB, extract
this asympotic exponential decay rate (i.e. κ if
the field decays ∼ e−κx) and plot this rate as a
function of ω , for the first defect mode, as you
increase ε2 as above (vary ε2 so that ω goes
from the top of the gap to the bottom).
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