18.369 Problem Set 3

Due Friday, 9 March 2018.

Problem 1: Periodic waveguides

In class, we showed by a variational proof that any
€(y), in two dimensions, gives rise to at least one
guided mode whenever €(y)~! = &' — A(y) for
JA>0and [|A] <o.! At least, we showed it for
the TE polarization (H in the Z direction). Now, you
will show the same thing much more generally, but
using the same basic technique.

(a) Let €(x,y)~! = 1 —A(x,y) be a periodic func-
tion A(x,y) = A(x+a,y), with [|A| < e and
Io 5 Alx,y)dxdy > 0. Prove that at least one
TE guided mode exists, by choosing an ap-
propriate (simple!) trial function of the form
H(x,y) = u(x,y)e* . That is, show by the vari-
ational theorem that ®> < ck* for the lowest-
frequency eigenmode. (It is sufficient to show
it for |k| < m/a, by periodicity in k-space; for
|k| > 7 /a, the light line is not @ = c|k|.)

(b) Prove the same thing as in (a), but for the TM
polarization (E in the 2 direction). Hint: you
will need to pick a trial function of the form
H(x,y) = [u(x,y)X +v(x,y)§]e™ where u and v
are some (simple!) functions such that V-H =
0.2

Problem 2: 2d Waveguide Modes

Consider the two-dimensional dielectric waveguide
of thickness £ that we first introduced in class:

et = {

where &,; > €,. Look for solutions with the “TM”
polarization E = E,(x,y)2e'®'. The boundary con-
ditions are that E; is continuous and dE;/dy (~ H,)
is continuous, and that we require the fields to be fi-

nite at x,y — oo,

vyl <h/2
ly|>h/2

Eni
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!As in class, the latter condition on A will allow you to swap
limits and integrals for any integrand whose magnitude is bounded
above by some constant times |A| (by Lebesgue’s dominated con-
vergence theorem).

2You might be tempted, for the TM polarization, to use the
E form of the variational theorem that you derived in problem 1,
since the proof in that case will be somewhat simpler: you can
just choose E(x,y) = u(x,y)e**% and you will have V-€E = 0
automatically. However, this will lead to an inequivalent condition
J(e—-1) >OinsteadoffA:f‘ee;l > 0.

(a) Prove that we can set &, = 1 without loss
of generality, by a change of variables in
Maxwell’s equations. In the subsequent sec-
tions, therefore, set £, = 1 for simplicity.

(b) Find the guided-mode solutions E.(x,y) =
¢™E;(y), where the corresponding eigenvalue
(k) < ck is below the light line.

(i) Show for the |y| < h/2 region the solu-
tions are of sine or cosine form, and that
for |y| > h/2 they are decaying exponen-
tials. (At this point, you can’t easily prove
that the arguments of the sines/cosines are
real, but that’s okay—you will be able to
rule out the possibility of imaginary argu-
ments below.)

(ii)) Match boundary conditions (E, and H,
are continuous) at y = £//2 to obtain an
equation relating @ and k. You should get
a transcendental equation that you cannot
solve explicitly. However, you can “solve”
it graphically and learn a lot about the so-
lutions—in particular, you might try plot-
ting the left and right hand sides of your
equation (suitably arranged) as a function
of k, = %Zehi—kz, so that you have
two curves and the solutions are the in-
tersections (your curves will be parame-
terized by k, but try plotting them for one
or two typical k).

(iii) From the graphical picture, derive an ex-
act expression for the number of guided
modes as a function of k. Show that there
is exactly one guided mode, with even
symmetry, as k — 0, as we argued in class.

Problem 3: Point sources & periodicity

Suppose we are in 2d (xy plane), working with the
TM polarization (E out of plane), and have a peri-
odic (period a) surface shown in Fig 1(left). Above
the surface is a time-harmonic point source J =
5(x)8(y)e 'z (choosing the origin to be the loca-
tion of the point source, for convenience). As you
saw in pset 2, you can define a frequency-domain
problem (V x V x — w?¢)E = i ] (setting g = €&y =
1 for convenience) for the time-harmonic fields in re-
sponse to this current.

In this problem, you will explain how to take ad-
vantage of the fact that the structure (but not the
source or fields!) is periodic, by reducing it to a set



Figure 1: Schematic for problem 1. Left: a time-
harmonic point source J above a periodic surface.
Right: the problem can be reduced to solving a set
of problems with point sources in a single unit cell,
with periodic boundary conditions on the fields.

of problems of the form shown in Fig. 1(right): solv-
ing for the fields of the same point source J, but in a
single unit cell of the structure with Bloch-periodic
boundary conditions on the fields.

(a)

(b)

Show that the total resulting electric field Ecan
be written as a superposition of solutions E; to
(VxVx —0*¢)E; = i®] in a unit-cell domain
with Bloch-periodic boundary conditions. Hint,
the following identity is useful:

=)

a [2m/a .
5(x) = 1= /0 [ y 5(x—na)e’k"“] dk

n=—co
and recall conservation of irrep.

Suppose that we want to compute the radiated
power P (per unit z) from J by integrating the
Poynting flux through a plane above the current
»=y0>0):

e
p— 5/, $- RIE"(x,y0) x H(x,y0)] dx.

Show that P = 5 02 %/ p.dk, a simple integral

of powers P, computed separately for each pe-
riodic subproblem above. (Hint: orthogonality
of partner functions.)



