
18.369 Problem Set 3
Due Friday, 9 March 2018.

Problem 1: Periodic waveguides
In class, we showed by a variational proof that any
ε(y), in two dimensions, gives rise to at least one
guided mode whenever ε(y)−1 = ε

−1
lo − ∆(y) for∫

∆ > 0 and
∫
|∆| < ∞.1 At least, we showed it for

the TE polarization (H in the ẑ direction). Now, you
will show the same thing much more generally, but
using the same basic technique.

(a) Let ε(x,y)−1 = 1−∆(x,y) be a periodic func-
tion ∆(x,y) = ∆(x + a,y), with

∫
|∆| < ∞ and∫ a

0
∫

∞

−∞
∆(x,y)dxdy > 0. Prove that at least one

TE guided mode exists, by choosing an ap-
propriate (simple!) trial function of the form
H(x,y)= u(x,y)eikxẑ . That is, show by the vari-
ational theorem that ω2 < c2k2 for the lowest-
frequency eigenmode. (It is sufficient to show
it for |k| ≤ π/a, by periodicity in k-space; for
|k|> π/a, the light line is not ω = c|k|.)

(b) Prove the same thing as in (a), but for the TM
polarization (E in the ẑ direction). Hint: you
will need to pick a trial function of the form
H(x,y) = [u(x,y)x̂+ v(x,y)ŷ]eikx where u and v
are some (simple!) functions such that ∇ ·H =
0.2

Problem 2: 2d Waveguide Modes
Consider the two-dimensional dielectric waveguide
of thickness h that we first introduced in class:

ε(y) =
{

εhi |y|< h/2
εlo |y| ≥ h/2 ,

where εhi > εlo. Look for solutions with the “TM”
polarization E = Ez(x,y)ẑe−iωt . The boundary con-
ditions are that Ez is continuous and ∂Ez/∂y (∼ Hx)
is continuous, and that we require the fields to be fi-
nite at x,y→±∞,

1As in class, the latter condition on ∆ will allow you to swap
limits and integrals for any integrand whose magnitude is bounded
above by some constant times |∆| (by Lebesgue’s dominated con-
vergence theorem).

2You might be tempted, for the TM polarization, to use the
E form of the variational theorem that you derived in problem 1,
since the proof in that case will be somewhat simpler: you can
just choose E(x,y) = u(x,y)eikxẑ and you will have ∇ · εE = 0
automatically. However, this will lead to an inequivalent condition∫
(ε−1)> 0 instead of

∫
∆ =

∫
ε−1

ε
> 0.

(a) Prove that we can set εlo = 1 without loss
of generality, by a change of variables in
Maxwell’s equations. In the subsequent sec-
tions, therefore, set εlo = 1 for simplicity.

(b) Find the guided-mode solutions Ez(x,y) =
eikxEk(y), where the corresponding eigenvalue
ω(k)< ck is below the light line.

(i) Show for the |y| < h/2 region the solu-
tions are of sine or cosine form, and that
for |y| > h/2 they are decaying exponen-
tials. (At this point, you can’t easily prove
that the arguments of the sines/cosines are
real, but that’s okay—you will be able to
rule out the possibility of imaginary argu-
ments below.)

(ii) Match boundary conditions (Ez and Hx
are continuous) at y = ±h/2 to obtain an
equation relating ω and k. You should get
a transcendental equation that you cannot
solve explicitly. However, you can “solve”
it graphically and learn a lot about the so-
lutions—in particular, you might try plot-
ting the left and right hand sides of your
equation (suitably arranged) as a function

of k⊥ =
√

ω

c2
2
εhi− k2, so that you have

two curves and the solutions are the in-
tersections (your curves will be parame-
terized by k, but try plotting them for one
or two typical k).

(iii) From the graphical picture, derive an ex-
act expression for the number of guided
modes as a function of k. Show that there
is exactly one guided mode, with even
symmetry, as k→ 0, as we argued in class.

Problem 3: Point sources & periodicity
Suppose we are in 2d (xy plane), working with the
TM polarization (E out of plane), and have a peri-
odic (period a) surface shown in Fig 1(left). Above
the surface is a time-harmonic point source J =
δ (x)δ (y)e−iωt ẑ (choosing the origin to be the loca-
tion of the point source, for convenience). As you
saw in pset 2, you can define a frequency-domain
problem (∇×∇×−ω2ε)E= iωJ (setting µ0 = ε0 =
1 for convenience) for the time-harmonic fields in re-
sponse to this current.

In this problem, you will explain how to take ad-
vantage of the fact that the structure (but not the
source or fields!) is periodic, by reducing it to a set

1



a

J

a

J

Figure 1: Schematic for problem 1. Left: a time-
harmonic point source J above a periodic surface.
Right: the problem can be reduced to solving a set
of problems with point sources in a single unit cell,
with periodic boundary conditions on the fields.

of problems of the form shown in Fig. 1(right): solv-
ing for the fields of the same point source J, but in a
single unit cell of the structure with Bloch-periodic
boundary conditions on the fields.

(a) Show that the total resulting electric field Ecan
be written as a superposition of solutions Ek to
(∇×∇×−ω2ε)Ek = iωJ in a unit-cell domain
with Bloch-periodic boundary conditions. Hint,
the following identity is useful:

δ (x) =
a

2π

∫ 2π/a

0

[
∞

∑
n=−∞

δ (x−na)eikna

]
dk

and recall conservation of irrep.

(b) Suppose that we want to compute the radiated
power P (per unit z) from J by integrating the
Poynting flux through a plane above the current
(y = y0 > 0):

P =
1
2

∫
∞

−∞

ŷ ·ℜ [E∗(x,y0)×H(x,y0)]dx.

Show that P = a
2π

∫ 2π/a
0 Pkdk, a simple integral

of powers Pk computed separately for each pe-
riodic subproblem above. (Hint: orthogonality
of partner functions.)
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