
18.369 Problem Set 1 Solutions

Problem 1: Adjoints and operators (5+10+5 points)

(a) If † is conjugate-transpose of a matrix or vector, we are just using the
usual linear-algebra rule that (AB)† = B†A†, hence 〈h,Oh′〉 = h†(Oh′) =
(O†h)†h′ = 〈O†h, h′〉 for the Euclidean inner product.

More explicitly, if h is a column-vector and we let h† be its conjugate
transpose, then h† is a row vector and h†h′ =

∑
m h
∗
mh
′
m = 〈h, h′〉 by the

usual row-times-column multiplicaton rule. If O is a matrix then Oh′ =∑
nOmnh

′
n by the usual matrix-vector product. Then the dot product

of h with Oh′ is given by
∑
m h
∗
m(

∑
nOmnh

′
n) =

∑
n(
∑
mO

∗
mnhm)∗h′n,

which is the same thing as the dot product of O†h with h′ where O† is
the conjugate transpose of O.

Thus, interpreting † as the conjugate transpose in this finite-dimensional
case is consistent with the abstract definitions given in class.

(b) If Ô is unitary and we send u → Ôu and v → Ôv, then 〈u, v〉 →
〈u, Ô†Ôv〉 = 〈u, v〉, and thus inner products are preserved. Consider now
two eigensolutions Ôu1 = λ1u1 and Ôu2 = λ2u2. Then 〈u1, Ô†Ôu2〉 =
〈u1, u2〉 by the unitarity of Ô and 〈u1, Ô†Ôu2〉 = 〈Ôu1, Ôu2〉 = λ∗1λ2 〈u1, u2〉
by the eigenvector property (where we let Ô† act to the left, and conjugate
the eigenvalue when we factor it out, as in class). Combining these two ex-
pressions, we have (λ∗1λ2− 1) 〈u1, u2〉 = 0. There are three cases, just like
for Hermitian operators. If u1 = u2, then we must have λ∗1λ1 = 1 = |λ1|2,
and thus the eigenvalues have unit magnitude. This also implies that
λ∗1 = 1/λ1. If λ1 6= λ2, then (λ∗1λ2 − 1) = (λ2/λ1 − 1) 6= 0, and there-
fore 〈u1, u2〉 = 0 and the eigenvectors are orthogonal. If λ1 = λ2 but have
linearly independent u1 6= u2 (degenerate eigenvectors, i.e. geometric mul-
tiplicity > 1), then we can form orthogonal linear combinations (e.g. via
Gram–Schmidt).

(c) Take two vectors u and v, and consider their inner product. Then 〈u, Ô−1Ôv〉 =
〈u, v〉. By definition of the adjoint, however, if we move first Ô−1 and then
Ô to act to the left, then we get 〈u, v〉 = 〈Ô†(Ô−1)†u, v〉. For this to be true
for all u and v, we must have Ô†(Ô−1)† = 1 and thus (Ô−1)† = (Ô†)−1.
Q.E.D.

Problem 2: Maxwell eigenproblems (5+5+5+5+5 points)

(a) To eliminate H, we start with Faraday’s law ∇× E = iωcH and take the
curl of both sides. We obtain:

∇×∇×E =
ω2

c2
εE.
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If we divide both sides by ε, we get the form of a linear eigenproblem but
the operator 1

ε∇ × ∇× is not Hermitian under the usual inner product
〈E1,E2〉 =

∫
E∗1 ·E2—integrating by parts as in class, assuming boundary

conditions such that the boundary terms vanish, we find that its adjoint
is ∇ × ∇ × 1

ε ·, which is not the same operator unless the 1
ε commutes

with the curls, which only happens if ε is a constant. However, if we
leave it in the form above we have a generalized Hermitian problem with
Â = ∇ × ∇× and B̂ = ε . Â is Hermitian for the same reason that Θ̂
was (it is Θ̂ for ε = 1), and B̂ is Hermitian as long as ε is real (so that
H∗1 · εH2 = (εH1)∗ ·H2).

(b) The proof follows the same lines as in class. Consider two eigensolutions
u1 and u2 (where Âu = λB̂u, and u 6= 0), and take 〈u2, Âu1〉. Since Â
is Hermitian, we can operate it to the left or to the right in the inner
product, and get λ∗2 〈u2, B̂u1〉 = λ1 〈u2, B̂u1〉, or (λ∗2 − λ1) 〈u2, B̂u1〉 = 0.
There are three cases. First, if u1 = u2 then we must have λ1 = λ∗1 (real
eigenvalues), since 〈u1, B̂u1〉 > 0 by definition if B̂ is positive definite.
Second, if λ1 6= λ2 then we must have 〈u2, B̂u1〉 = 0, which is our modified
orthogonality condition. Finally, if λ1 = λ2 but u1 6= u2, then we can form
a linear combination that is orthogonal (since any linear combination still
is an eigenvector); e.g.

u2 → u2 − u1
〈u2, B̂u1〉
〈u1, B̂u1〉

,

where we have again relied on the fact that B̂ is positive definite (so
that we can divide by 〈u1, B̂u1〉). This is certainly true for B̂ = ε, since
〈E, B̂E〉 =

∫
ε|E|2 > 0 for all E 6= 0 (almost everywhere) as long as we

have a real ε > 0 as we required in class.

(c) First, let us verify that 〈E,E′〉B = 〈E, B̂E′〉 is indeed an inner product.
Because B̂ is self-adjoint, we have 〈E′,E〉B = 〈E′, B̂E〉 = 〈B̂E′,E〉 =
〈E, B̂E′〉∗ = 〈E,E′〉∗B . Bilinearity follows from bilinearity of 〈·, ·〉 and lin-
earity of B̂. Positivity 〈E,E〉B = 〈E, B̂E〉 > 0 except for E = 0 (almost
everywhere) follows from positive-definiteness of B̂. All good!

Now, Hermiticity of B̂−1Â follows almost trivially from Hermiticity of Â
and B̂: 〈E, B̂−1ÂE′〉B = 〈E,���

B̂B̂−1ÂE′〉 = 〈ÂE,E′〉 = 〈ÂE, B̂−1B̂E′〉 =
〈B̂−1ÂE, B̂E′〉 = 〈B̂−1ÂE,E′〉B , where we have used the fact, from prob-
lem 1, that Hermiticity of B̂ implies Hermiticity of B̂−1. Q.E.D.

(d) If µ 6= 1 then we have B = µH 6= H, and when we eliminate E or H from
Maxwell’s equations we get:

∇× 1

ε
∇×H =

ω2

c2
µH

∇× 1

µ
∇×E =

ω2

c2
εE
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with the constraints ∇ · εE = 0 and ∇ · µH = 0. These are both general-
ized Hermitian eigenproblems (since µ and ∇× 1

µ∇× are both Hermitian
operators for the same reason ε and ∇× 1

ε∇× were). Thus, the eigenvalues
are real and the eigenstates are orthogonal through µ and ε, respectively,
as proved above. To prove that ω is real, we consider an eigenfunction H.
Then 〈H, Θ̂H〉 = ω2

c2 〈H,µH〉 and we must have ω2 ≥ 0 since Θ̂ is positive
semi-definite (from class) and µ is positive definite (for the same reason ε
was, above). The E eigenproblem has real ω for the same reason (except
that µ and ε are swapped).

Alternatively, as in part (c), we can write them as ordinary Hermitian
eigenproblems with a modified inner product, e.g. 1

ε∇ ×
1
µ∇ × E =

ω2

c2 E, where 1
ε∇×

1
µ∇× is Hermitian and positive semidefinite under the

〈E,E′〉B =
∫
E∗ · εE′ inner product as above. The results then follow.

(e) Consider the H eigenproblem. (To even get this linear eigenproblem, we
must immediately require ε to be an invertible matrix, and of course re-
quire ε and µ to be independent of ω or the field strength.) For the right-
hand operator µ to be Hermitian, we require

∫
H∗1 · µH2 =

∫
(µH1)∗ ·H2

for all H1 and H2, which implies that H∗1 · µH2 = (µH1)∗ · H2. Thus,
we require the 3 × 3 µ(x) matrix to be itself Hermitian at every x (that
is, equal to its conjugate transpose, from problem 1). (Technically, these
requirements hold “almost everywhere” rather than at every point, but as
usual I will gloss over this distinction.) Similarly, for Θ̂ to be Hermitian
we require

∫
F∗1 ·ε−1F2 =

∫
(ε−1F1)∗ ·F2 where F = ∇×H, so that we can

move the ε−1 over to the left side of the inner product, and thus ε−1(x)
must be Hermitian at every x. From problem 1, this implies that ε(x) is
also Hermitian. Finally, to get real eigenvalues we saw from above that we
must have µ positive definite (

∫
H∗ · µH > 0 for H 6= 0); since this must

be true for all H then µ(x) at each point must be a positive-definite 3× 3
matrix (positive eigenvalues). Similarly, Θ̂ must be positive semi-definite,
which implies that ε−1(x) is positive semi-definite (non-negative eigenval-
ues), but since it has to be invertible we must have ε(x) positive definite
(zero eigenvalues would make it singular). To sum up, we must have ε(x)
and µ(x) being positive-definite Hermitian matrices at (almost) every x.
(The analysis for the E eigenproblem is identical.)

Technically, there are a couple other possibilities. In part (b), we showed
that if B̂ is positive-definite it leads to real eigenvalues etc. The same
properties, however, hold if B̂ is negative-definite, and if both Â and B̂
are negative-definite we still get real, positive eigenvalues. Thus, another
possibility is for ε and µ to be Hermitian negative-definite matrices. (For
a scalar ε < 0 and µ < 0, this leads to materials with a negative real
index of refraction n = −√εµ!) Furthermore, ε and µ could both be anti -
Hermitian instead of Hermitian (i.e., ε† = −ε and µ† = −µ), although I’m
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not aware of any physical examples of this. More generally, for any com-
plex number z, if we replace ε and µ by zε and µ/z, then ω is unchanged
(e.g. making z = i gives anti-Hermitian matrices).
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