18.369 Problem Set 1 Solutions

Problem 1: Adjoints and operators (5+10+5 points)

(a) If \dagger is conjugate-transpose of a matrix or vector, we are just using the usual linear-algebra rule that $(AB)^{\dagger} = B^{\dagger}A^{\dagger}$, hence $\langle h, Oh' \rangle = h^{\dagger}(Oh') = (O^{\dagger}h)^{\dagger}h' = \langle O^{\dagger}h, h' \rangle$ for the Euclidean inner product.

More explicitly, if h is a column-vector and we let h^{\dagger} be its conjugate transpose, then h^{\dagger} is a row vector and $h^{\dagger}h' = \sum_{m} h_{m}^{*}h'_{m} = \langle h, h' \rangle$ by the usual row-times-column multiplicaton rule. If O is a matrix then $Oh' = \sum_{n} O_{mn}h'_{n}$ by the usual matrix-vector product. Then the dot product of h with Oh' is given by $\sum_{m} h_{m}^{*}(\sum_{n} O_{mn}h'_{n}) = \sum_{n} (\sum_{m} O_{mn}^{*}h_{m})^{*}h'_{n}$, which is the same thing as the dot product of $O^{\dagger}h$ with h' where O^{\dagger} is the conjugate transpose of O.

Thus, interpreting † as the conjugate transpose in this finite-dimensional case is consistent with the abstract definitions given in class.

- (b) If Ô is unitary and we send u → Ôu and v → Ôv, then ⟨u, v⟩ → ⟨u, Ô[†]Ôv⟩ = ⟨u, v⟩, and thus inner products are preserved. Consider now two eigensolutions Ôu₁ = λ₁u₁ and Ôu₂ = λ₂u₂. Then ⟨u₁, Ô[†]Ôu₂⟩ = ⟨u₁, u₂⟩ by the unitarity of Ô and ⟨u₁, Ô[†]Ôu₂⟩ = ⟨Ôu₁, Ôu₂⟩ = λ₁^{*}λ₂ ⟨u₁, u₂⟩ by the eigenvector property (where we let Ô[†] act to the left, and conjugate the eigenvalue when we factor it out, as in class). Combining these two expressions, we have (λ₁^{*}λ₂ − 1) ⟨u₁, u₂⟩ = 0. There are three cases, just like for Hermitian operators. If u₁ = u₂, then we must have λ₁^{*}λ₁ = 1 = |λ₁|², and thus the eigenvalues have unit magnitude. This also implies that λ₁^{*} = 1/λ₁. If λ₁ ≠ λ₂, then (λ₁^{*}λ₂ − 1) = (λ₂/λ₁ − 1) ≠ 0, and therefore ⟨u₁, u₂⟩ = 0 and the eigenvectors are orthogonal. If λ₁ = λ₂ but have linearly independent u₁ ≠ u₂ (degenerate eigenvectors, i.e. geometric multiplicity > 1), then we can form orthogonal linear combinations (e.g. via Gram–Schmidt).
- (c) Take two vectors u and v, and consider their inner product. Then $\langle u, \hat{O}^{-1} \hat{O} v \rangle = \langle u, v \rangle$. By definition of the adjoint, however, if we move first \hat{O}^{-1} and then \hat{O} to act to the left, then we get $\langle u, v \rangle = \langle \hat{O}^{\dagger} (\hat{O}^{-1})^{\dagger} u, v \rangle$. For this to be true for all u and v, we must have $\hat{O}^{\dagger} (\hat{O}^{-1})^{\dagger} = \mathbf{1}$ and thus $(\hat{O}^{-1})^{\dagger} = (\hat{O}^{\dagger})^{-1}$. Q.E.D.

Problem 2: Maxwell eigenproblems (5+5+5+5+5 points)

(a) To eliminate **H**, we start with Faraday's law $\nabla \times \mathbf{E} = i \frac{\omega}{c} \mathbf{H}$ and take the curl of both sides. We obtain:

$$\nabla \times \nabla \times \mathbf{E} = \frac{\omega^2}{c^2} \varepsilon \mathbf{E}$$

If we divide both sides by ε , we get the form of a linear eigenproblem but the operator $\frac{1}{\varepsilon}\nabla \times \nabla \times$ is not Hermitian under the usual inner product $\langle \mathbf{E}_1, \mathbf{E}_2 \rangle = \int \mathbf{E}_1^* \cdot \mathbf{E}_2$ —integrating by parts as in class, assuming boundary conditions such that the boundary terms vanish, we find that its adjoint is $\nabla \times \nabla \times \frac{1}{\varepsilon}$, which is not the same operator unless the $\frac{1}{\varepsilon}$ commutes with the curls, which only happens if ε is a constant. However, if we leave it in the form above we have a generalized Hermitian problem with $\hat{A} = \nabla \times \nabla \times$ and $\hat{B} = \varepsilon$. \hat{A} is Hermitian for the same reason that $\hat{\Theta}$ was (it is $\hat{\Theta}$ for $\varepsilon = 1$), and \hat{B} is Hermitian as long as ε is real (so that $\mathbf{H}_1^* \cdot \varepsilon \mathbf{H}_2 = (\varepsilon \mathbf{H}_1)^* \cdot \mathbf{H}_2$).

(b) The proof follows the same lines as in class. Consider two eigensolutions u₁ and u₂ (where Âu = λB̂u, and u ≠ 0), and take ⟨u₂, Âu₁⟩. Since is Hermitian, we can operate it to the left or to the right in the inner product, and get λ^{*}₂ ⟨u₂, B̂u₁⟩ = λ₁ ⟨u₂, B̂u₁⟩, or (λ^{*}₂ - λ₁) ⟨u₂, B̂u₁⟩ = 0. There are three cases. First, if u₁ = u₂ then we must have λ₁ = λ^{*}₁ (real eigenvalues), since ⟨u₁, B̂u₁⟩ > 0 by definition if B̂ is positive definite. Second, if λ₁ ≠ λ₂ then we must have ⟨u₂, B̂u₁⟩ = 0, which is our modified orthogonality condition. Finally, if λ₁ = λ₂ but u₁ ≠ u₂, then we can form a linear combination that is orthogonal (since any linear combination still is an eigenvector); e.g.

$$u_2 \rightarrow u_2 - u_1 \frac{\langle u_2, \hat{B}u_1 \rangle}{\langle u_1, \hat{B}u_1 \rangle}$$

where we have again relied on the fact that \hat{B} is positive definite (so that we can divide by $\langle u_1, \hat{B}u_1 \rangle$). This is certainly true for $\hat{B} = \varepsilon$, since $\langle E, \hat{B}E \rangle = \int \varepsilon |\mathbf{E}|^2 > 0$ for all $\mathbf{E} \neq 0$ (almost everywhere) as long as we have a real $\varepsilon > 0$ as we required in class.

(c) First, let us verify that $\langle \mathbf{E}, \mathbf{E}' \rangle_B = \langle \mathbf{E}, \hat{B}\mathbf{E}' \rangle$ is indeed an inner product. Because \hat{B} is self-adjoint, we have $\langle \mathbf{E}', \mathbf{E} \rangle_B = \langle \mathbf{E}', \hat{B}\mathbf{E} \rangle = \langle \hat{B}\mathbf{E}', \mathbf{E} \rangle = \langle \mathbf{E}, \hat{B}\mathbf{E}' \rangle^* = \langle \mathbf{E}, \mathbf{E}' \rangle_B^*$. Bilinearity follows from bilinearity of $\langle \cdot, \cdot \rangle$ and linearity of \hat{B} . Positivity $\langle \mathbf{E}, \mathbf{E} \rangle_B = \langle \mathbf{E}, \hat{B}\mathbf{E} \rangle > 0$ except for $\mathbf{E} = 0$ (almost everywhere) follows from positive-definiteness of \hat{B} . All good!

Now, Hermiticity of $\hat{B}^{-1}\hat{A}$ follows almost trivially from Hermiticity of \hat{A} and \hat{B} : $\langle \mathbf{E}, \hat{B}^{-1}\hat{A}\mathbf{E}' \rangle_B = \langle \mathbf{E}, \hat{B}\hat{B}^{-1}\hat{A}\mathbf{E}' \rangle = \langle \hat{A}\mathbf{E}, \mathbf{E}' \rangle = \langle \hat{A}\mathbf{E}, \hat{B}^{-1}\hat{B}\mathbf{E}' \rangle = \langle \hat{B}^{-1}\hat{A}\mathbf{E}, \hat{B}\mathbf{E}' \rangle = \langle \hat{B}^{-1}\hat{A}\mathbf{E}, \mathbf{E}' \rangle_B$, where we have used the fact, from problem 1, that Hermiticity of \hat{B} implies Hermiticity of \hat{B}^{-1} . Q.E.D.

(d) If $\mu \neq 1$ then we have $\mathbf{B} = \mu \mathbf{H} \neq \mathbf{H}$, and when we eliminate \mathbf{E} or \mathbf{H} from Maxwell's equations we get:

$$\nabla \times \frac{1}{\varepsilon} \nabla \times \mathbf{H} = \frac{\omega^2}{c^2} \mu \mathbf{H}$$
$$\nabla \times \frac{1}{\mu} \nabla \times \mathbf{E} = \frac{\omega^2}{c^2} \varepsilon \mathbf{E}$$

with the constraints $\nabla \cdot \varepsilon \mathbf{E} = 0$ and $\nabla \cdot \mu \mathbf{H} = 0$. These are both generalized Hermitian eigenproblems (since μ and $\nabla \times \frac{1}{\mu} \nabla \times$ are both Hermitian operators for the same reason ε and $\nabla \times \frac{1}{\varepsilon} \nabla \times$ were). Thus, the eigenvalues are real and the eigenstates are orthogonal through μ and ε , respectively, as proved above. To prove that ω is real, we consider an eigenfunction H. Then $\langle H, \hat{\Theta}H \rangle = \frac{\omega^2}{c^2} \langle H, \mu H \rangle$ and we must have $\omega^2 \ge 0$ since $\hat{\Theta}$ is positive semi-definite (from class) and μ is positive definite (for the same reason ε was, above). The **E** eigenproblem has real ω for the same reason (except that μ and ε are swapped).

Alternatively, as in part (c), we can write them as ordinary Hermitian eigenproblems with a modified inner product, e.g. $\frac{1}{\varepsilon}\nabla \times \frac{1}{\mu}\nabla \times \mathbf{E} = \frac{\omega^2}{c^2}\mathbf{E}$, where $\frac{1}{\varepsilon}\nabla \times \frac{1}{\mu}\nabla \times$ is Hermitian and positive semidefinite under the $\langle \mathbf{E}, \mathbf{E}' \rangle_B = \int \mathbf{E}^* \cdot \varepsilon \mathbf{E}'$ inner product as above. The results then follow.

(e) Consider the **H** eigenproblem. (To even get this linear eigenproblem, we must immediately require ε to be an invertible matrix, and of course require ε and μ to be independent of ω or the field strength.) For the righthand operator μ to be Hermitian, we require $\int \mathbf{H}_1^* \cdot \mu \mathbf{H}_2 = \int (\mu \mathbf{H}_1)^* \cdot \mathbf{H}_2$ for all \mathbf{H}_1 and \mathbf{H}_2 , which implies that $\mathbf{H}_1^* \cdot \mu \mathbf{H}_2 = (\mu \mathbf{H}_1)^* \cdot \mathbf{H}_2$. Thus, we require the $3 \times 3 \mu(\mathbf{x})$ matrix to be itself Hermitian at every \mathbf{x} (that is, equal to its conjugate transpose, from problem 1). (Technically, these requirements hold "almost everywhere" rather than at every point, but as usual I will gloss over this distinction.) Similarly, for $\hat{\Theta}$ to be Hermitian we require $\int \mathbf{F}_1^* \cdot \varepsilon^{-1} \mathbf{F}_2 = \int (\varepsilon^{-1} \mathbf{F}_1)^* \cdot \mathbf{F}_2$ where $\mathbf{F} = \nabla \times \mathbf{H}$, so that we can move the ε^{-1} over to the left side of the inner product, and thus $\varepsilon^{-1}(\mathbf{x})$ must be Hermitian at every x. From problem 1, this implies that $\varepsilon(\mathbf{x})$ is also Hermitian. Finally, to get real eigenvalues we saw from above that we must have μ positive definite ($\int \mathbf{H}^* \cdot \mu \mathbf{H} > 0$ for $\mathbf{H} \neq 0$); since this must be true for all **H** then $\mu(\mathbf{x})$ at each point must be a positive-definite 3×3 matrix (positive eigenvalues). Similarly, $\hat{\Theta}$ must be positive semi-definite, which implies that $\varepsilon^{-1}(\mathbf{x})$ is positive semi-definite (non-negative eigenvalues), but since it has to be invertible we must have $\varepsilon(\mathbf{x})$ positive definite (zero eigenvalues would make it singular). To sum up, we must have $\varepsilon(\mathbf{x})$ and $\mu(\mathbf{x})$ being positive-definite Hermitian matrices at (almost) every \mathbf{x} . (The analysis for the **E** eigenproblem is identical.)

Technically, there are a couple other possibilities. In part (b), we showed that if \hat{B} is positive-definite it leads to real eigenvalues etc. The same properties, however, hold if \hat{B} is *negative*-definite, and if both \hat{A} and \hat{B} are negative-definite we still get real, *positive* eigenvalues. Thus, another possibility is for ε and μ to be Hermitian *negative*-definite matrices. (For a scalar $\varepsilon < 0$ and $\mu < 0$, this leads to materials with a *negative* real index of refraction $n = -\sqrt{\varepsilon \mu}$!) Furthermore, ε and μ could both be *anti*-Hermitian instead of Hermitian (i.e., $\varepsilon^{\dagger} = -\varepsilon$ and $\mu^{\dagger} = -\mu$), although I'm

not aware of any physical examples of this. More generally, for any complex number z, if we replace ε and μ by $z\varepsilon$ and μ/z , then ω is unchanged (e.g. making z = i gives anti-Hermitian matrices).