18.369 Problem Set 1 Solutions

Problem 1: Adjoints and operators (5+10-+5 points)

(a) If 1 is conjugate-transpose of a matrix or vector, we are just using the
usual linear-algebra rule that (AB)T = BT AT, hence (h,Oh') = hT(ON) =
(OTh)Th! = (OTh, 1) for the Euclidean inner product.

More explicitly, if h is a column-vector and we let h' be its conjugate
transpose, then Al is a row vector and h'h' =" h# h! = (h,h’) by the
usual row-times-column multiplicaton rule. If O is a matrix then Oh' =
> Omnhl, by the usual matrix-vector product. Then the dot product
of h with Ok’ is given by Y h* (3°, Omnhy) = >, (>, O nhm) hi,,
which is the same thing as the dot product of Ofh with k' where O is
the conjugate transpose of O.

Thus, interpreting t as the conjugate transpose in this finite-dimensional
case is consistent with the abstract definitions given in class.

(b) If O is unitary and we send u — Ou and v — Ov, then (u,v) —
(u, O'Ov) = (u,v), and thus inner products are preserved. Consider now
two eigensolutions Ou; = Arug and Ousy = Aguz. Then <u1,OTOU2> =
(u1,us) by the unitarity of O and (uq, OTOu2> (Oul, Ou2> = AT Ao (u1, ug)
by the eigenvector property (where we let Ot act to the left, and conjugate
the eigenvalue when we factor it out, as in class). Comblnlng these two ex-
pressions, we have (AfAg — 1) (u1,u2) = 0. There are three cases, just like
for Hermitian operators. If u; = ug, then we must have Aj\; = 1 = |\ |2,
and thus the eigenvalues have unit magnitude. This also implies that
A7 = 1/A1. If Ay # Ag, then (A\fA2 — 1) = (A2/A1 — 1) # 0, and there-
fore (u1,u2) = 0 and the eigenvectors are orthogonal. If Ay = A2 but have
linearly independent u; # us (degenerate eigenvectors, i.e. geometric mul-
tiplicity > 1), then we can form orthogonal linear combinations (e.g. via
Gram—Schmidt).

(¢) Take two vectors u and v, and consider their inner product. Then (u, O‘lév> =
(u,v). By definition of the adjoint, however, if we move first O~! and then
O to act to the left, then we get (u,v) = (OT(O~")tu,v). For this to be true
for all u and v, we must have Of(O~1)T = 1 and thus (O—1)f = (O")~!
QED.

Problem 2: Maxwell eigenproblems (5+5+5-+5-+5 points)

(a) To eliminate H, we start with Faraday’s law V x E = i“H and take the
curl of both sides. We obtain:

2
VxVxE=2¢E.
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If we divide both sides by e, we get the form of a linear eigenproblem but
the operator %V x VX is not Hermitian under the usual inner product
(E1,Ey) = [ Ej-E,—integrating by parts as in class, assuming boundary
conditions such that the boundary terms vanish, we find that its adjoint
is VxV x %o, which is not the same operator unless the % commutes
with the curls, which only happens if € is a constant. However, if we
leave it in the form above we have a generalized Hermitian problem with

=V X Vx and B = ¢ . A is Hermitian for the same reason that ©
was (it is © for e = 1), and B is Hermitian as long as ¢ is real (so that
HT . EHQ = (EHl)* . HQ)

The proof follows the same lines as in class. Consider two eigensolutions
uy and uy (where Au = ABu, and u # 0), and take (ug, Au;). Since A
is Hermitian, we can operate it to the left or to the right in the inner
product, and get A} (ug, Bui) = A (ug, Buy), or (A5 — A1) (ug, Buy) = 0.
There are three cases. First, if u1 = ug then we must have A\ = A] (real
eigenvalues), since (ul,Bu1> > 0 by definition if B is positive definite.
Second, if A\; # Ag then we must have (us, Bu1> = 0, which is our modified
orthogonality condition. Finally, if Ay = A but u; # ug, then we can form
a linear combination that is orthogonal (since any linear combination still
is an eigenvector); e.g.
(ug, Buy)

Ug —> Uy — U] ————
<u1,Bu1>7

where we have again relied on the fact that B is positive definite (so
that we can divide by (uj, Bui)). This is certainly true for B = ¢, since

(E,BE) = [€|E|> > 0 for all E # 0 (almost everywhere) as long as we
have a real € > 0 as we required in class.

First, let us verify that (E,E')p = (E, BE/) is indeed an inner product.
Because B is self-adjoint, we have (E/,E)p = (E/, BE) = (BE'E) =
(E, BE')* = (E, E')%. Bilinearity follows from bilinearity of (-,-) and lin-
earity of B. Positivity (E,E)p = (E, BE) > 0 except for E = 0 (almost
everywhere) follows from positive-definiteness of B. All good!

Now, Hermiticity of B~1A4 follows almost trivially from Hermiticity of A
and B: (E, B~ 1AE’)B = (E,BB"TAE') = (AE,E') = (AE, B~'BE/) =
(B~'AE, BE') = (B~'AE, E') g, where we have used the fact, from prob-
lem 1, that Hermiticity of B implies Hermiticity of B~!. Q.E.D.

If i # 1 then we have B = yH # H, and when we eliminate E or H from

Maxwell’s equations we get:
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Vx-VxH="uH
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Vx -VxE=—c¢cE
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with the constraints V :-eE =0 and V - yH = 0. These are both general-
ized Hermitian eigenproblems (since p and V x %Vx are both Hermitian

operators for the same reason € and V x %Vx were). Thus, the eigenvalues
are real and the eigenstates are orthogonal through p and e, respectively,
as proved above. To prove that w is real, we consider an eigenfunction H.
Then (H,OH) = “C“—; (H, nH) and we must have w? > 0 since © is positive
semi-definite (from class) and yu is positive definite (for the same reason ¢
was, above). The E eigenproblem has real w for the same reason (except
that u and e are swapped).

Alternatively, as in part (c), we can write them as ordinary Hermitian
eigenproblems with a modified inner product, e.g. %V X %V x E =

“é—jE, where %V X I%Vx is Hermitian and positive semidefinite under the
(E,E')p = [ E* - ¢E/ inner product as above. The results then follow.

Consider the H eigenproblem. (To even get this linear eigenproblem, we
must immediately require € to be an invertible matrix, and of course re-
quire € and p to be independent of w or the field strength.) For the right-
hand operator y to be Hermitian, we require [ Hj - uHy = [(uH;)* - Ho
for all H; and Hy, which implies that H} - uHs = (uH;)* - Hy. Thus,
we require the 3 x 3 u(x) matrix to be itself Hermitian at every x (that
is, equal to its conjugate transpose, from problem 1). (Technically, these
requirements hold “almost everywhere” rather than at every point, but as
usual I will gloss over this distinction.) Similarly, for O to be Hermitian
we require [ Fj-e7'Fy = [(¢7'F1)*-Fy where F = V x H, so that we can
move the e over to the left side of the inner product, and thus e~1(x)
must be Hermitian at every x. From problem 1, this implies that e(x) is
also Hermitian. Finally, to get real eigenvalues we saw from above that we
must have p positive definite ([ H* - pgH > 0 for H # 0); since this must
be true for all H then u(x) at each point must be a positive-definite 3 x 3
matrix (positive eigenvalues). Similarly, © must be positive semi-definite,
which implies that ¢ ~!(x) is positive semi-definite (non-negative eigenval-
ues), but since it has to be invertible we must have £(x) positive definite
(zero eigenvalues would make it singular). To sum up, we must have £(x)
and p(x) being positive-definite Hermitian matrices at (almost) every x.
(The analysis for the E eigenproblem is identical.)

Technically, there are a couple other possibilities. In part (b), we showed
that if B is positive-definite it leads to real eigenvalues etc. The same
properties, however, hold if B is negative-definite, and if both A and B
are negative-definite we still get real, positive eigenvalues. Thus, another
possibility is for € and u to be Hermitian negative-definite matrices. (For
a scalar ¢ < 0 and p < 0, this leads to materials with a negative real
index of refraction n = —,/en!) Furthermore, € and p could both be anti-
Hermitian instead of Hermitian (i.e., et = —¢ and u' = —p), although I'm



not aware of any physical examples of this. More generally, for any com-
plex number z, if we replace £ and p by ze and p/z, then w is unchanged
(e.g. making z = 7 gives anti-Hermitian matrices).



