18.369 Problem Set 1 Solutions

Problem 1: Adjoints and operators (5+10+5 points)

(a) If \(h \) is a column-vector and we let \(h^\dagger \) be its conjugate transpose, then \(h^\dagger \) is a row vector and \(h^\dagger h' = \sum_m h^*_m h'_m = \langle h, h' \rangle \) by the usual row-times-column multiplication rule. If \(O \) is a matrix then \(Oh = \sum_n O_{mn} h'_n \) by the usual matrix-vector product. Then the dot product of \(h \) with \(Oh' \) is given by \(\sum_m h^*_m (\sum_n O_{mn} h'_n) = \sum_n (\sum_m O_{mn} h_m^*) h'_n \), which is the same thing as the dot product of \(O^\dagger h \) with \(h' \) where \(O^\dagger \) is the conjugate transpose of \(O \). Thus, interpreting \(\dagger \) as the conjugate transpose in this finite-dimensional case is consistent with the abstract definitions given in class.

(b) If \(\hat{O} \) is unitary and we send \(u \rightarrow \hat{O}u \) and \(v \rightarrow \hat{O}v \), then \(\langle u, v \rangle \rightarrow \langle u, \hat{O}^\dagger \hat{O}v \rangle = \langle u, v \rangle \), and thus inner products are preserved. Consider now two eigensolutions \(\hat{O}u_1 = \lambda_1 u_1 \) and \(\hat{O}u_2 = \lambda_2 u_2. \) Then \(\langle u_1, \hat{O}^\dagger \hat{O}u_2 \rangle = \langle u_1, u_2 \rangle \) by the unitarity of \(\hat{O} \) and \(\langle u_1, \hat{O}^\dagger \hat{O}u_2 \rangle = \langle \hat{O}u_1, \hat{O}u_2 \rangle = \lambda_1^* \lambda_2 \langle u_1, u_2 \rangle \) by the eigenvector property (where we let \(\hat{O}^\dagger \) act to the left, and conjugate the eigenvalue when we factor it out, as in class). Combining these two expressions, we have \((\lambda_1^* \lambda_2 - 1) \langle u_1, u_2 \rangle = 0 \). There are three cases, just like for Hermitian operators. If \(u_1 = u_2 \), then we must have \(\lambda_1^* \lambda_2 = 1 = |\lambda_1|^2 \), and thus the eigenvalues have unit magnitude. This also implies that \(\lambda_1^* = 1/\lambda_1 \). If \(\lambda_1 \neq \lambda_2 \), then \(\lambda_1^* \lambda_2 - 1 = (\lambda_2/\lambda_1 - 1) \neq 0 \), and therefore \(\langle u_1, u_2 \rangle = 0 \) and the eigenvectors are orthogonal. If \(\lambda_1 = \lambda_2 \) but have linearly independent \(u_1 \neq u_2 \) (degenerate eigenvectors, i.e. geometric multiplicity \(> 1 \)), then we can form orthogonal linear combinations (e.g. via Gram–Schmidt).

(c) Take two vectors \(u \) and \(v \), and consider their inner product. Then \(\langle u, \hat{O}^{-1} \hat{O}v \rangle = \langle u, v \rangle. \) By definition of the adjoint, however, if we move first \(\hat{O}^{-1} \) and then \(\hat{O} \) to act to the left, then we get \(\langle u, v \rangle = \langle \hat{O}^\dagger \hat{O}^{-1} \rangle u, v \). For this to be true for all \(u \) and \(v \), we must have \(\hat{O}^\dagger \hat{O}^{-1} \) and \(\hat{O}^{-1} \) and thus \(\hat{O}^\dagger = (\hat{O}^{-1})^{-1}. \) Q.E.D.

Problem 2: Maxwell eigenproblems (5+5+5+5+5 points)

(a) To eliminate \(H \), we start with Faraday’s law \(\nabla \times E = i \omega/c H \) and take the curl of both sides. We obtain:

\[
\nabla \times \nabla \times E = \frac{\omega^2}{c^2} \varepsilon E.
\]

If we divide both sides by \(\varepsilon \), we get the form of a linear eigenproblem but the operator \(\frac{1}{i} \nabla \times \nabla \times \) is not Hermitian under the usual inner product \(\langle E_1, E_2 \rangle = \int E_1^* \cdot E_2 \) —integrating by parts as in class, assuming boundary conditions such that the boundary terms vanish, we find that its adjoint is \(\nabla \times \nabla \times \frac{1}{i} \), which is not the same operator unless the \(\frac{1}{i} \) commutes with the curls, which only happens if \(\varepsilon \) is a constant. However, if we
leave it in the form above we have a generalized Hermitian problem with $A = \nabla \times \nabla \times$ and $B = \varepsilon$. A is Hermitian for the same reason that Θ was (it is Θ for $\varepsilon = 1$), and B is Hermitian as long as ε is real (so that $H_1^* \cdot \varepsilon H_2 = (\varepsilon H_1)^* \cdot H_2$).

(b) The proof follows the same lines as in class. Consider two eigensolutions u_1 and u_2 (where $Au = \lambda Bu$, and $u \neq 0$), and take $\langle u_2, Au_1 \rangle$. Since A is Hermitian, we can operate it to the left or to the right in the inner product, and get $\lambda_1^* \langle u_2, Bu_1 \rangle = \lambda_1 \langle u_2, Bu_1 \rangle$, or $\langle u_2, Bu_1 \rangle = 0$. There are three cases. First, if $u_1 = u_2$ then we must have $\lambda_1 = \lambda_1^*$ (real eigenvalues), since $\langle u_1, Bu_1 \rangle > 0$ by definition if B is positive definite. Second, if $\lambda_1 \neq \lambda_2$ then we must have $\langle u_2, Bu_1 \rangle = 0$, which is our modified orthogonality condition. Finally, if $\lambda_1 = \lambda_2$ but $u_1 \neq u_2$, then we can form a linear combination that is orthogonal (since any linear combination still is an eigenvector); e.g.

$$u_2 \rightarrow u_2 - u_1 \frac{\langle u_2, Bu_1 \rangle}{\langle u_1, Bu_1 \rangle},$$

where we have again relied on the fact that B is positive definite (so that we can divide by $\langle u_1, Bu_1 \rangle$). This is certainly true for $B = \varepsilon$, since $\langle E, B \varepsilon E \rangle = \int \varepsilon |E|^2 > 0$ for all $E \neq 0$ (almost everywhere) as long as $\varepsilon > 0$ as we assumed in class.

(c) First, let us verify that $\langle E, B \varepsilon E \rangle = \langle E, B \varepsilon E \rangle$ is indeed an inner product. Because B is self-adjoint, we have $\langle E', E \rangle_B = \langle E', B \varepsilon E \rangle = \langle B \varepsilon E', E \rangle = \langle E, B \varepsilon E' \rangle^* = \langle E, E' \rangle_B$. Bilinearity follows from bilinearity of $\langle \cdot, \cdot \rangle$ and linearity of B. Positivity $\langle E, E \rangle_B = \langle E, B \varepsilon E \rangle > 0$ except for $E = 0$ (almost everywhere) follows from positive-definiteness of B. All good!

Now, Hermiticity of $B^{-1} A$ follows almost trivially from Hermiticity of A and B: $(E, B^{-1} A E')_B = (E, B B^{-1} A E') = \langle A E, E' \rangle = \langle A E, B^{-1} B E' \rangle = \langle B^{-1} A E, B E' \rangle = \langle B^{-1} A E, E' \rangle_B$, where we have used the fact, from problem 1, that Hermiticity of B implies Hermiticity of B^{-1}. Q.E.D.

(d) If $\mu \neq 1$ then we have $B = \mu H \neq H$, and when we eliminate E or H from Maxwell’s equations we get:

$$\nabla \times \frac{1}{\varepsilon} \nabla \times H = \frac{\omega^2}{c^2} \mu H$$

$$\nabla \times \frac{1}{\mu} \nabla \times E = \frac{\omega^2}{c^2} \varepsilon E$$

with the constraints $\nabla \cdot \varepsilon E = 0$ and $\nabla \cdot \mu H = 0$. These are both generalized Hermitian eigenproblems (since μ and $\nabla \times \frac{1}{\mu} \nabla \times$ are both Hermitian operators for the same reason ε and $\nabla \times \frac{1}{\varepsilon} \nabla \times$ were). Thus, the eigenvalues are real and the eigenstates are orthogonal through μ and ε, respectively,
as proved above. To prove that ω is real, we consider an eigenfunction H. Then $\langle H, \hat{\Theta} H \rangle = \frac{\omega^2}{\varepsilon} \langle H, \mu H \rangle$ and we must have $\omega^2 \geq 0$ since $\hat{\Theta}$ is positive semi-definite (from class) and μ is positive definite (for the same reason ε was, above). The E eigenproblem has real ω for the same reason (except that μ and ε are swapped).

Alternatively, as in part (c), we can write them as ordinary Hermitian eigenproblems with a modified inner product, e.g. $\frac{1}{\varepsilon} \nabla \times \frac{1}{\mu} \nabla \times E = \frac{\omega^2}{\varepsilon} E$, where $\frac{1}{\varepsilon} \nabla \times \frac{1}{\mu} \nabla \times$ is Hermitian and positive semidefinite under the inner product $\langle E, E' \rangle_B = \int E^* \cdot \varepsilon E'/\mu$ inner product as above. The results then follow.

(c) Consider the H eigenproblem. (To even get this linear eigenproblem, we must immediately require ε to be an invertible matrix, and of course require ε and μ to be independent of ω or the field strength.) For the right-hand operator μ to be Hermitian, we require $\int H_1^* \cdot \mu H_2 = \int (\mu H_1)^* \cdot H_2$ for all H_1 and H_2, which implies that $H_1^* \cdot \mu H_2 = (\mu H_1)^* \cdot H_2$. Thus, we require the 3×3 $\mu(x)$ matrix to be itself Hermitian at every x (that is, equal to its conjugate transpose, from problem 1). (Technically, these requirements hold “almost everywhere” rather than at every point, but as usual I will gloss over this distinction.) Similarly, for $\hat{\Theta}$ to be Hermitian we require $\int F_1^* \cdot \varepsilon^{-1} F_2 = \int (\varepsilon^{-1} F_1)^* \cdot F_2$ where $F = \nabla \times H$, so that we can move the ε^{-1} over to the left side of the inner product, and thus $\varepsilon^{-1}(x)$ must be Hermitian at every x. From problem 1, this implies that $\varepsilon(x)$ is also Hermitian. Finally, to get real eigenvalues we saw from above that we must have μ positive definite ($\int H^* \cdot \mu H > 0$ for $H \neq 0$); since this must be true for all H then $\mu(x)$ at each point must be a positive-definite 3×3 matrix (positive eigenvalues). Similarly, $\hat{\Theta}$ must be positive semi-definite, which implies that $\varepsilon^{-1}(x)$ is positive semi-definite (non-negative eigenvalues), but since it has to be invertible we must have $\varepsilon(x)$ positive definite (zero eigenvalues would make it singular). To sum up, we must have $\varepsilon(x)$ and $\mu(x)$ being positive-definite Hermitian matrices at (almost) every x. (The analysis for the E eigenproblem is identical.)

Technically, there are a couple other possibilities. In part (b), we showed that if \hat{B} is positive-definite it leads to real eigenvalues etc. The same properties, however, hold if \hat{B} is negative-definite, and if both \hat{A} and \hat{B} are negative-definite we still get real, positive eigenvalues. Thus, another possibility is for ε and μ to be Hermitian negative-definite matrices. (For a scalar $\varepsilon < 0$ and $\mu < 0$, this leads to materials with a negative real index of refraction $n = -\sqrt{\varepsilon\mu}$) Furthermore, ε and μ could both be anti-Hermitian instead of Hermitian (i.e., $\varepsilon^\dagger = -\varepsilon$ and $\mu^\dagger = -\mu$), although I’m not aware of any physical examples of this. More generally, for any complex number z, if we replace ε and μ by $z\varepsilon$ and μ/z, then ω is unchanged (e.g. making $z = i$ gives anti-Hermitian matrices).