Problem 1: Adjoints and operators

(a) If \(h \) is a column-vector and we let \(h^\dagger \) be its conjugate transpose, then \(h^\dagger \) is a row vector and \(h^\dagger h' = \sum_m h_m^* h_m' = \langle h, h' \rangle \) by the usual row-times-column multiplication rule. If \(\hat{O} \) is a matrix then \(\hat{O} h' = \sum_n O_{mn} h_n' \) by the usual matrix-vector product. Then the dot product of \(h \) with \(\hat{O} h' \) is given by \(\sum_m h_m^* (\sum_n O_{mn} h_n') = \sum_n (\sum_m O_{mn}^* h_m') h_n' \), which is the same thing as the dot product of \(\hat{O}^\dagger h \) with \(h' \) where \(\hat{O}^\dagger \) is the conjugate transpose of \(\hat{O} \). Thus, interpreting \(\dagger \) as the conjugate transpose in this finite-dimensional case is consistent with the abstract definitions given in class.

(b) We simply rely on two required properties of inner products: conjugacy \(\langle u, v \rangle = \langle v, u \rangle^* \), and linearity \(\langle u, \lambda v \rangle = \lambda \langle u, v \rangle \). Then, \(\langle u, \hat{O}^\dagger v \rangle = \langle u, \hat{O} v \rangle^* = \langle v, \hat{O}^\dagger u \rangle = \langle v, \hat{O}^\dagger \hat{O} u \rangle = \langle v, \hat{O} \hat{O}^\dagger u \rangle = \langle \hat{O}^\dagger u, v \rangle \). Thus, inspecting the definition of \(\hat{O}^\dagger \), we see that \(\hat{O}^\dagger = \hat{O}^* \).

(c) If \(\hat{O} \) is unitary and we send \(u \to \hat{O} u \) and \(v \to \hat{O} v \), then \(\langle u, v \rangle \to \langle u, \hat{O}^\dagger \hat{O} v \rangle = \langle u, v \rangle \), and thus inner products are preserved. Consider now two eigenstates \(\hat{O} u_1 = \lambda_1 u_1 \) and \(\hat{O} u_2 = \lambda_2 u_2 \). Then \(\langle u_1, \hat{O} \hat{O}^\dagger u_2 \rangle = \langle u_1, u_2 \rangle \) by the unitarity of \(\hat{O} \) and \(\langle u_1, \hat{O}^\dagger \hat{O} u_2 \rangle = \langle \hat{O}^\dagger u_1, \hat{O} u_2 \rangle = \lambda_2^* \lambda_1 \langle u_1, u_2 \rangle \) by the eigenvector property (where we let \(\hat{O} \) act to the left, and conjugate the eigenvalue as proved above). Combining these two expressions, we have \((\lambda_1^\dagger \lambda_2 - 1) \langle u_1, u_2 \rangle = 0 \). There are three cases, just like for Hermitian operators. If \(u_1 = u_2 \), then we must have \(\lambda_1^\dagger \lambda_1 = 1 = |\lambda_1|^2 \), and thus the eigenvalues have unit magnitude. This also implies that \(\lambda_1^\dagger = 1/\lambda_1 \). If \(\lambda_1 \neq \lambda_2 \), then \((\lambda_1^\dagger \lambda_2 - 1) = (\lambda_2/\lambda_1 - 1) \neq 0 \), and therefore \(\langle u_1, u_2 \rangle = 0 \) and the eigenstates are orthogonal. If \(\lambda_1 = \lambda_2 \) but \(u_1 \neq u_2 \) (degenerate eigenstates), then we can form orthogonal linear combinations.

(d) Take two states \(u \) and \(v \), and consider the inner product. Then \(\langle u, \hat{O}^\dagger \hat{O} v \rangle = \langle u, v \rangle \). By definition of the adjoint, however, if we move first \(\hat{O}^{-1} \) and then \(\hat{O} \) to act to the left, then we get \(\langle u, v \rangle = \langle \hat{O}^\dagger (\hat{O}^{-1})^\dagger, v \rangle \). For this to be true for all \(u \) and \(v \), we must have \(\hat{O}^\dagger (\hat{O}^{-1})^\dagger = 1 \) and thus \((\hat{O}^{-1})^\dagger = (\hat{O}^\dagger)^{-1} \). Q.E.D.

Problem 2: Maxwell eigenproblems

(a) To eliminate \(\mathbf{H} \), we start with Faraday’s law \(\nabla \times \mathbf{E} = \frac{i \omega}{c} \mathbf{H} \) and take the curl of both sides. We obtain:

\[
\nabla \times \nabla \times \mathbf{E} = \frac{\omega^2}{c^2} \varepsilon \mathbf{E}.
\]

If we divide both sides by \(\varepsilon \), we get the form of a linear eigenproblem but the operator \(\frac{1}{\varepsilon} \nabla \times \nabla \times \) is not Hermitian—integrating by parts, we find that its adjoint is \(\nabla \times \nabla \times \frac{1}{\varepsilon} \), which is not the same operator unless the \(\frac{1}{\varepsilon} \)
commutes with the curls, which only happens if ϵ is a constant. However, if we leave it in the form above we have a generalized Hermitian problem with $A = \nabla \times \nabla \times$ and $\hat{B} = \epsilon \cdot A$ is Hermitian for the same reason that $\hat{\Theta}$ was (it is $\hat{\Theta}$ for $\epsilon = 1$), and \hat{B} is Hermitian as long as ϵ is real (so that $H_1^* \cdot H_2 = (\epsilon H_1)^* \cdot H_2$).

(b) The proof follows the same lines as in class. Consider two eigenstates u_1 and u_2 (where $\hat{A}u = \lambda \hat{B}u$), and take $\langle u_2, \hat{B}u_1 \rangle$. Since \hat{A} is Hermitian, we can operate it to the left or to the right in the inner product, and get $\lambda_2^2 \langle u_2, \hat{B}u_1 \rangle = \lambda_1 \langle u_2, \hat{B}u_1 \rangle$, or $(\lambda_2^2 - \lambda_1) \langle u_2, \hat{B}u_1 \rangle = 0$. There are three cases. First, if $\lambda_1 = \lambda_2$ then we must have $\lambda_1 = \lambda_1^*$ (real eigenvalues), since $\langle u_1, \hat{B}u_1 \rangle > 0$ by definition if \hat{B} is positive definite. Second, if $\lambda_1 \neq \lambda_2$ then we must have $\langle u_2, \hat{B}u_1 \rangle = 0$, which is our modified orthogonality condition. Finally, if $\lambda_1 = \lambda_2$ but $u_1 \neq u_2$, then we can form a linear combination that is orthogonal (since any linear combination still is an eigenvector); e.g.

$$u_2 \rightarrow u_2 - u_1 \frac{\langle u_2, \hat{B}u_1 \rangle}{\langle u_1, \hat{B}u_1 \rangle},$$

where we have again relied on the fact that \hat{B} is positive definite (so that we can divide by $\langle u_1, \hat{B}u_1 \rangle$). This is certainly true for $\hat{B} = \epsilon \cdot A$, since $\langle \epsilon \cdot E, \hat{B} \epsilon \cdot E' \rangle = \int \epsilon |E|^2 > 0$ for all $\epsilon \neq 0$ as long as $\epsilon > 0$ as we assumed in class.

(c) First, let us verify that $\langle \epsilon \cdot E, \epsilon \cdot E' \rangle_B = \langle \epsilon \cdot E, \hat{B} \epsilon \cdot E' \rangle$ is indeed an inner product. Because \hat{B} is self-adjoint, we have $\langle \epsilon \cdot E, \epsilon \cdot E' \rangle_B = \langle \epsilon \cdot E', \hat{B} \epsilon \cdot E \rangle = \langle \epsilon \cdot E, \hat{B} \epsilon \cdot E' \rangle_B$. Bilinearity follows from bilinearity of $\langle \cdot, \cdot \rangle$ and linearity of \hat{B}. Positivity $\langle \epsilon \cdot E, \epsilon \cdot E \rangle_B = \langle \epsilon \cdot E, \hat{B} \epsilon \cdot E \rangle > 0$ except for $\epsilon \cdot E = 0$ (almost everywhere) follows from positive-definiteness of \hat{B}. All good!

Now, Hermiticity of $\hat{B}^{-1} \hat{A}$ follows almost trivially from Hermiticity of \hat{A} and \hat{B}: $\langle \epsilon \cdot E, \hat{B}^{-1} \hat{A} \epsilon \cdot E' \rangle_B = \langle \epsilon \cdot E, \hat{B} \hat{B}^{-1} \hat{A} \epsilon \cdot E' \rangle = \langle \epsilon \cdot E, \hat{A} \epsilon \cdot E' \rangle = \langle \hat{B} \hat{B}^{-1} \hat{A} \epsilon \cdot E', \epsilon \cdot E \rangle_B = \langle \hat{B}^{-1} \hat{A} \epsilon \cdot E', \epsilon \cdot E \rangle_B$, where we have used the fact, from problem 1, that Hermiticity of \hat{B} implies Hermiticity of \hat{B}^{-1}. Q.E.D.

(d) If $\mu \neq 1$ then we have $\hat{B} = \mu \hat{H} \neq \hat{H}$, and when we eliminate $\epsilon \cdot E$ or $\epsilon \cdot H$ from Maxwell’s equations we get:

$$\nabla \times \frac{1}{\epsilon} \nabla \times \hat{H} = \frac{\omega^2}{c^2} \mu \hat{H}$$

$$\nabla \times \frac{1}{\mu} \nabla \times \hat{E} = \frac{\omega^2}{c^2} \epsilon \hat{E}$$

with the constraints $\nabla \cdot \epsilon \hat{E} = 0$ and $\nabla \cdot \mu \hat{H} = 0$. These are both generalized Hermitian eigenproblems (since μ and $\nabla \times \frac{1}{\mu} \nabla \times$ are both Hermitian operators for the same reason ϵ and $\nabla \times \frac{1}{\epsilon} \nabla \times$ were); we can’t make them
ordinary Hermitian eigenproblems for the same reason as in the E eigen-
problem above, except in the trivial case of μ or ε constant. Thus, the
eigenvalues are real and the eigenstates are orthogonal through μ and ε,
respectively, as proved above. To prove that ω is real, we consider an
eigenstate H. Then $\langle H, \hat{\Theta} H \rangle = \frac{\omega^2}{\mu} \langle H, \mu H \rangle$ and we must have $\omega^2 \geq 0$
since $\hat{\Theta}$ is positive semi-definite (from class) and μ is positive definite (for
the same reason ε was, above). The E eigenproblem has real ω for the
same reason (except that μ and ε are swapped).

(e) Consider the H eigenproblem. (To even get this linear eigenproblem, we
must immediately require ε to be an invertible matrix, and of course re-
quire ε and μ to be independent of ω or the field strength.) For the right-
hand operator μ to be Hermitian, we require $\int H_1 \cdot \mu H_2 = \int (\mu H_1)^* \cdot H_2$
for all H_1 and H_2, which implies that $H_1 \cdot \mu H_2 = (\mu H_1)^* \cdot H_2$. Thus,
we require the $3 \times 3 \mu(x)$ matrix to be itself Hermitian at every x (that
is, equal to its conjugate transpose, from problem 1). (Technically, these
requirements hold “almost everywhere” rather than at every point, but as
usual I will gloss over this distinction.) Similarly, for $\hat{\Theta}$ to be Hermitian
we require $\int F_1 \cdot \varepsilon^{-1} F_2 = \int (\varepsilon^{-1} F_1)^* \cdot F_2$ where $F = \nabla \times H$, so that we can move the ε^{-1} over to the left side of the inner product, and thus $\varepsilon^{-1}(x)$
must be Hermitian at every x. From problem 1, this implies that $\varepsilon(x)$ is
also Hermitian. Finally, to get real eigenvalues we saw from above that
we must have μ positive definite ($\int H^* \cdot \mu H > 0$ for $H \neq 0$); since this
must be true for all H then $\mu(x)$ at each point must be a positive-definite
3×3 matrix (positive eigenvalues). Similarly, $\hat{\Theta}$ must be positive semi-
definite, which implies that $\varepsilon^{-1}(x)$ is positive semi-definite (non-negative
eigenvalues), but since it has to be invertible we must have $\varepsilon(x)$ positive
definite (zero eigenvalues would make it singular). To sum up, we must
have $\varepsilon(x)$ and $\mu(x)$ being positive-definite Hermitian matrices at every x.
(The proof for the E eigenproblem is identical.)

Actually, there are a couple other possibilities. In part (b), we showed
that if \hat{B} is positive-definite it leads to real eigenvalues etc. The same
properties, however, hold if \hat{B} is negative-definite, and if both \hat{A} and \hat{B}
are negative-definite we still get real, positive eigenvalues. Thus, another
possibility is for ε and μ to be Hermitian negative-definite matrices. (For
a scalar $\varepsilon < 0$ and $\mu < 0$, this leads to materials with a negative real
index of refraction $n = -\sqrt{\varepsilon \mu}$!) Furthermore, ε and μ could both be anti-
Hermitian instead of Hermitian (i.e., $\varepsilon^\dagger = -\varepsilon$ and $\mu^\dagger = -\mu$), although I’m
not aware of any physical examples of this. More generally, for any com-
plex number z, if we replace ε and μ by ze and μ/z, then ω is unchanged
(e.g. making $z = i$ gives anti-Hermitian matrices).