
18.369 Midterm Exam Solutions (Spring 2018)

Problem 1: Irreps
(a) Since D(n)D(n′) = D(n+n′), it follows as in class that D(n) = e−isn for some s. (In particular, note that D(n) = D(1)n

and D(1) 6= 0.) Since D(N) = 1 (rotation by CN
N ), it follows that s = 2π

N k for some integer k, i.e. we have the 1d irreps

D(k)(n) = e−
2πi
N kn.

Furthermore, since we have N rotations in the CN group, all in their own conjugacy class, it must be that we have exactly
N irreps. This is true because

D(k+N)(n) = e−
2πi
N kn−2πni = D(k)(n),

i.e. only k = 0,1, . . . ,N−1 are distinct irreps.

(b) Similar to class and in homework, a partner function of D(k) is of the of the form

φ` = φ0e
2πi
N k`

for any constant φ0, so that φ`−n = D(k)(n)φ`. (Note that this is periodic: φ`+N = φ`.) Since all of the eigenvectors can be
chosen in the form of partner functions, these are our eigenvectors. We an just plug them in to Θ̂φ to find the eigenvalues.
The `-th of Θ̂φ is

κ

m
(2φ`−φ`+1−φ`−1) =

κ

m

(
2− e

2πi
N k− e−

2πi
N k
)

φ0e
2πi
N k` =

2κ

m
(1− cos(2πk/N))φ`,

confirming that φ` is an eigenvector with eigenvalue

ω
2
k =

2κ

m
(1− cos(2πk/N)) =

2κ

m
sin2

(
πk
N

)
= ω

2
k+N = ω

2
−k = ω

2
N−k

for k = 0,1, . . . ,N−1. (Note that we have exactly N linearly independent eigenvectors for our N×N matrix. Note also
that the eigenvalues are real and nonnegative, which must be true for a real-symmetric positive-semidefinite matrix.)
Hence the eigenfrequencies are:

ωk =±
√

2κ

m
sin
(

πk
N

)
.

(c) For odd N, we also have the mirror symmetries σ :

(i) There are N mirror-symmetry planes, one through each vertex (bisecting the opposite edge). (Note that if N were
even, we would have N/2 mirror planes through vertices and N/2 mirror planes through edges.)

(ii) The rotation Cn
N is conjugate to C−n

N under a mirror flip. Ever mirror plane is conjugate to every other mirror plane
under a rotation. Hence there are the following conjugacy classes: C0

N = E, the N−1
2 pairs C±n

N for n = 1, . . . N−1
2 ,

and the Nσ conjugacy class of mirror planes. (Note that if N were even, the mirror planes through vertices and
faces would be in different conjugacy classes.)

(iii) There are 1+ N−1
2 + 1 = N+3

2 conjugacy classes, and hence there are N+3
2 irreps. The sum of their dimensions2

must equal the number of elements in the group, 2N. A further hint comes from the 2-fold degeneracies of the eigen-
values ω2

k = ω2
N−k for k = 1,2, . . ., which lets us know to expect 2-dimensional irreps. If you count how many 2d

irreps you can half, it turns out that you must have 2 1d irreps and N−1
2 2d irreps. This gives a sum of dimensions2

equal to 1+1+22 N−1
2 = 2+2N−2 = 2N, which is the correct sum. Indeed, the degenerate eigenvalues above for

k 6= 0 correspond to partners of 2d irreps (while k = 0 is the trivial 1d irrep).
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In fact, this is precisely the CNv group . In pset 2 you analyzed C3v and you found that it had two 1d irreps
and 1 = 3−1

2 2d irreps, exactly consistent with the general result here. (In the fall 2005 midterm there was an exam-
ple of C5v, which had two 1d irreps and 2 = 5−1

2 2d irreps, again consistent with our result here.)

One thing that you may find surprising is that there are two 1d irreps, but we only have one nondegenerate eigen-
value above at ω0 = 0. Why is this? The key thing is to understand what a mirror plane σ through a vertex `
does to φ`. Since φ` represents a displacement going around the circle tangentially, a mirror flip through ` must
send φ`→−φ`. That means the zero-frequency eigenfunction φ` = φ0 cannot transform as the trivial representation
D(g) = 1. Instead, it must transform as the other 1d irrep, in which D(n) = 1 and D(σ) = −1 . To get the trivial
irrep, we would actually have to consider a different physical problem with the same symmetry group, for example
oscillations in the radial direction from a ring of masses.

Problem 2: Index guiding
In class and in homework, you considered the problem of index-guiding: localization in a higher-index region with translational
symmetry. In this problem, you should do the same thing but with a different wave equation, the Schrödinger equation, whose
eigenmode equation for time-harmonic modes ψ(x)e−iωt is:

Ĥψ =
(
−∇

2 +V
)︸ ︷︷ ︸

Ĥ

ψ = ωψ

where V (x) is a “potential” function. In particular, we consider an x-independent potential V (y) in 2d, as depicted in figure ??,
that = 0 for |y|> h and is otherwise negative “on average,” i.e.

´
∞

−∞
V (y)dy < 0. You are also given that

´
∞

−∞
|V |dy is finite.

Note that Ĥ is Hermitian under the usual inner product 〈φ ,ψ〉 =
´

φ ∗ψ for functions φ ,ψ that decay sufficiently rapidly,
and 〈ψ, Ĥψ〉=

´
(|∇ψ|2 +V |ψ|2) via integration by parts.

(a) Solutions ψk(y)eikx satisfy the “reduced” eigenproblem Ĥkψk = ω(k)ψk with Ĥ = − d2

dy2 + k2 +V (y). Note that the k

dependence is purely in the form of an additive constant k2, so it follows that ω(k) = ω(0)+ k2.

Furthermore, similar to the Maxwell case from class, we expect that the eigenvalues will be divided into the “light
cone” — a continuous range of ω corresponding solutions in the infinite V = 0 regions — and one or more discrete
guided modes pulled down below the light cone by the V < 0 region. The light cone, the solution for V = 0, is just
planewaves ei(kx+kyy) for all real numbers ky, with eigenvalues ω = k2 + k2

y . This gives the light cone as a continuous
region ω ≥ k2.

As we will show explicitly in the next part, there is at least one guided mode below the light cone. There could be
more than one if the V < 0 region is big/deep enough, but in any case there will be a finite number. Unlike the Maxwell
case, however, we will not get more more higher-order modes as we increase k, because of the ω(k) = ω(0)+k2 property
from above: whatever guided modes we have will maintain a fixed separation from the light cone.

A typical band diagram is shown in figure 1.

(b) Similar to class and homework, we will use a trial function ψk(y) = e−α|y| in the limit of small α > 0. We need to show
〈ψ,Ĥψ〉
〈ψ,ψ〉 < k2, i.e.

α +
k2

α
+

ˆ
∞

−∞

Ve−2α|y|dy =
ˆ

∞

−∞

(
α

2 + k2 +V
)

e−2α|y|dy = 〈ψk, Ĥkψk〉< k2〈ψk,ψk〉 = k2
ˆ

∞

−∞

e−2α|y|dy =
k2

α
.

Cancelling the k2/α terms, we obtain the condition

α +

ˆ
∞

−∞

Ve−2α|y|dy < 0

for some α > 0. It suffices, therefore, to show that the left-hand side is negative for limα→0+ . Since
∣∣Ve−2α|y|∣∣ ≤ |V |

and
´
|V | < ∞ by assumption, we can use the dominated convergence theorem to interchange the limit and the integral.

The limit of the left-hand-side is therefore 0+
´

V , which is < 0 by assumption. It follows that we have at least one
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Figure 1: Schematic guided modes of a “channel” in the 2d Schrödinger equation.

eigenvalue below the light cone, i.e. a guided mode for all k.

(The problem only asked you to prove it for k 6= 0, since in the Maxwell case you don’t have guided modes at k = 0, but
in the Schrödinger case we have a guided mode at all k as depicted in figure 1.)

Problem 3: Projected band diagram
(a) The projection is done as follows:

(i) The edge of the projected Brillouin zone is at kd =
π

a
√

2
(π divided by the period).Since |M|= π

a

√
2, this means that

the edge of the projected Brillouin zone is at M/2.

(ii) The projected bands are shown as a shaded region in figure 2, with the points labeled above and below the gap.
Also shown are the folded bands from a supercell calculation (inset)—this is very helpful, because MPB will fold
the bands for you without making mistakes.

Note that the original Γ–M/2 curve becomes the bottom of the lower continuum, which then “folds back” so that M
(point b) lies back at kd = 0. The X point (c and f) projects onto kd = π

a
√

2
.

(b) The (exact) projected band diagrams for N = 1, N = 7, and N = 25 are shown in figure 3.

As N → ∞, we should get a continuum of guided bands filling up the intersectino of the light cone ω ≥ ckd (above
red line) with the gap—if the air defect is infinitely wide, the solutions are exactly the planewaves of air—and indeed we
can see a good approximation of that for N = 25. As N decreases, we will get fewer and fewer guided bands, eventually
just one for N = 1.

A more subtle feature is clearly visible in the N = 25 diagram: where the light line hits the edge of the Brillouin zone and
“folds back,” there is a line of avoided crossings. This is essentially because the “folded” light line is an approximate so-
lution (a planewave propagating along the defect) for a wide defect, which for a finite width turns into avoided crossings.

Another surprising feature is the fact that the N = 1 guided band is nearly (but not exactly) flat (about 2% bandwidth). I
don’t have any simple (non-numerical) explanation for this, however, and I don’t expect you to have guessed it.
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Figure 2: Left: band diagram and Brillouin zone (inset) for a square lattice of dielectric rods (period a, radius 0.2a, ε = 8.9).
Right: projected TM band diagram (shaded) along the diagonal direction. The inset shows a supercell, and black lines are the
folded bands for this finite supercell (with periodic boundary conditions in the lateral direction). Red letters label the points
indicated at left.
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Figure 3: Projected TM band diagram for linear defects of N rows of rods along the diagonal direction of a square lattice of
rods, for N = 1,7,25, with the geometry shown as insets. The gray shaded region is the spectrum of the bulk crystal, the blue
curves are guided bands in the gap, and the red line is the light line ω = ckd .
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