18.369 Midterm Exam (Spring 2018)

You have two hours. The problems have equal weight, so divide your time accordingly.

Problem 1: Irreps

As shown in figure 1, we arrange *N* identical masses m > 0 onto a circle, uniformly spaced, and attach each to its neighbors by a spring constant $\kappa > 0$. The masses are constrained to move along the circle, and the motion of each mass is described by an angle ϕ_{ℓ} as shown, where $\phi_{\ell} = 0$ corresponds to the initial position for mass ℓ .

If we assume a time-dependence $e^{-i\omega t}$ as usual, then the frequencies ω satisfy the eigenproblem $\hat{\Theta}\psi = \omega^2\psi$, where $\psi = (\phi_1, \phi_2, \dots, \phi_N)^T$ and $\hat{\Theta}$ is the $N \times N$ realsymmetric positive-semi-definite matrix:

$$\hat{\Theta} = \frac{\kappa}{m} \begin{pmatrix} 2 & -1 & 0 & \cdots & 0 & -1 \\ -1 & 2 & -1 & 0 & \cdots & 0 \\ 0 & -1 & 2 & -1 & 0 & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & -1 & 2 & -1 \\ -1 & 0 & \cdots & 0 & -1 & 2 \end{pmatrix}$$

Obviously, the system in figure 1 is invariant under C_N rotations, corresponding to a *cyclic shift* $\phi_1 \rightarrow \phi_2$, $\phi_2 \rightarrow \phi_3$, ..., $\phi_{N-1} \rightarrow \phi_N$, $\phi_N \rightarrow \phi_1$.

- (a) Let D(n) be the representation matrix for a rotation Cⁿ_N (i.e. a cyclic shift n times). What are the possible irreducible representations for this group (the *cyclic group* of order N)? [Hint: D(n)D(n') = D(?).] Be sure to get the right number of irreps!
- (b) Using your answer from (a), solve for the eigenfrequencies ω and the corresponding eigenvectors.
- (c) This structure *also* has mirror symmetries σ . If *N* is an *odd* number, then:
 - (i) How many mirror symmetry planes are there?
 - (ii) What are the conjugacy classes of the symmetry if you include *both* the translations *and* the mirror planes?
 - (iii) How many irreps are there, and what are their dimensions? Does this match the degeneracies of your eigenvalues in (b)?

Figure 1: *N* identical masses *m* arranged on a circle, connected with spring constants κ , and allowed to slide freely on the circle, where ϕ_{ℓ} denotes the angular displacement of the ℓ -th mass from its initial position (equally spaced).

Problem 2: Index guiding

In class and in homework, you considered the problem of index-guiding: localization in a higher-index region with translational symmetry. In this problem, you should do the same thing but with a different wave equation, the Schrödinger equation, whose eigenmode equation for time-harmonic modes $\psi(\mathbf{x})e^{-i\omega t}$ is:

$$\hat{H}\psi = \underbrace{\left(-
abla^2 + V
ight)}_{\hat{H}}\psi = \omega\psi$$

where $V(\mathbf{x})$ is a "potential" function. In particular, we consider an *x*-independent potential V(y) in 2d, as depicted in figure 2, that = 0 for |y| > h and is otherwise negative "on average," i.e. $\int_{-\infty}^{\infty} V(y) dy < 0$. You are also given that $\int_{-\infty}^{\infty} |V| dy$ is finite.

Note that \hat{H} is Hermitian under the usual inner product $\langle \phi, \psi \rangle = \int \phi^* \psi$ for functions ϕ, ψ that decay sufficiently rapidly, and $\langle \psi, \hat{H}\psi \rangle = \int (|\nabla \psi|^2 + V|\psi|^2)$ via integration by parts.

(a) Sketch the band diagram $\omega(k)$ that you would expect to get for this problem for eigenfunctions of the form $\psi(y)e^{ikx}$. Given an explicit formula for the analogue

Figure 2: Schematic of an *x*-invariant function V(y) that = 0 for |y| > h and is otherwise "mostly" negative, i.e. $\int_{-\infty}^{\infty} V(y) dy < 0$.

Figure 3: TM band diagram of a square lattice (lattice constant *a*) of circular dielectric rods (right inset) plotted around the boundary of the irreducible Brillouin zone (left inset). Various points (black dots) are labelled with letters (a-f) for future reference.

of the "light cone" here (the propagating solutions in the $|y| \rightarrow \infty$ regions)?

(b) The smallest ω minimizes the Rayleigh quotient $\frac{\langle \psi, \hat{H}\psi \rangle}{\langle \psi, \psi \rangle}$. Use this fact, along with a suitable trial function (similar to homework) to show that there is at least one guided mode below the light cone for every $k \neq 0$.

[Recall from homework/class Lebesgue's dominated convergence theorem: you can interchange limits and integrals for $\int f(y)$ if $|f(y)| \le g(y)$ for some g(y) with $\int g < \infty$.]

Problem 3: Projected band diagram

The TM band diagram of a square lattice (lattice constant a) of circular dielectric rods is shown in figure 3. In class, we considered linear defects along the Γ -X direction (e.g.

Figure 4: Linear defect in the diagonal (Γ –M) direction of a square lattice of rods formed by removing N = 3 adjacent diagonal rows of rods (removed rods shown as dashed outlines).

removing a row of rods). Here, we will consider linear defects along the Γ -M (**diagonal**) direction, with period $a\sqrt{2}$ along that direction.

- (a) Sketch the projected band diagram along the Γ -M direction: plot the first two bands of the periodic crystal as a function of the component k_d of k along this direction, for the irreducible Brillouin zone in k_d .
 - (i) Recall that the M point is $(\frac{\pi}{a}, \frac{\pi}{a})$. Given that the period is $a\sqrt{2}$, where is the edge of the Brillouin zone in k_d along the Γ -M segment?
 - (ii) On your plot, **label** with letters **a**-**f** the points corresponding to those labelled locations in figure 3.
 - (iii) Be sure to shade any continuous ranges of ω that occur when you project the original Brillouin zone onto your (k_d, ω) plot.
- (b) Sketch (qualitatively) your best guess for the projected band diagram including the modes of a defect where N adjacent diagonal rows of rods are removed (e.g. as shown in figure 4 for N = 3). Sketch what happens as N increases, and in the limit as N → ∞. You may assume that there are *no surface states* for this crystal termination. [Hint: it might be easier to start with the N → ∞ limit and then sketch what happens as N decreases.]