
18.369 Midterm Exam (Spring 2018)

You have two hours. The problems have equal
weight, so divide your time accordingly.

Problem 1: Irreps
As shown in figure 1, we arrange N identical masses m >
0 onto a circle, uniformly spaced, and attach each to its
neighbors by a spring constant κ > 0. The masses are
constrained to move along the circle, and the motion of
each mass is described by an angle φ` as shown, where
φ` = 0 corresponds to the initial position for mass `.

If we assume a time-dependence e−iωt as usual, then
the frequencies ω satisfy the eigenproblem Θ̂ψ = ω2ψ ,
where ψ = (φ1,φ2, · · · ,φN)

T and Θ̂ is the N × N real-
symmetric positive-semi-definite matrix:

Θ̂ =
κ

m



2 −1 0 · · · 0 −1
−1 2 −1 0 · · · 0

0 −1 2 −1 0
...

...
. . . . . . . . . . . . 0

0 · · · 0 −1 2 −1
−1 0 · · · 0 −1 2


Obviously, the system in figure 1 is invariant under CN

rotations, corresponding to a cyclic shift φ1 → φ2, φ2 →
φ3, . . . , φN−1→ φN , φN → φ1.

(a) Let D(n) be the representation matrix for a rotation
Cn

N (i.e. a cyclic shift n times). What are the possi-
ble irreducible representations for this group (the
cyclic group of order N)? [Hint: D(n)D(n′) = D(?).]
Be sure to get the right number of irreps!

(b) Using your answer from (a), solve for the eigenfre-
quencies ω and the corresponding eigenvectors.

(c) This structure also has mirror symmetries σ . If N is
an odd number, then:

(i) How many mirror symmetry planes are there?

(ii) What are the conjugacy classes of the symme-
try if you include both the translations and the
mirror planes?

(iii) How many irreps are there, and what are their
dimensions? Does this match the degeneracies
of your eigenvalues in (b)?
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Figure 1: N identical masses m arranged on a circle, con-
nected with spring constants κ , and allowed to slide freely
on the circle, where φ` denotes the angular displacement
of the `-th mass from its initial position (equally spaced).

Problem 2: Index guiding

In class and in homework, you considered the problem
of index-guiding: localization in a higher-index region
with translational symmetry. In this problem, you should
do the same thing but with a different wave equation,
the Schrödinger equation, whose eigenmode equation for
time-harmonic modes ψ(x)e−iωt is:

Ĥψ =
(
−∇

2 +V
)︸ ︷︷ ︸

Ĥ

ψ = ωψ

where V (x) is a “potential” function. In particular, we
consider an x-independent potential V (y) in 2d, as de-
picted in figure 2, that = 0 for |y| > h and is otherwise
negative “on average,” i.e.

´
∞

−∞
V (y)dy < 0. You are also

given that
´

∞

−∞
|V |dy is finite.

Note that Ĥ is Hermitian under the usual inner product
〈φ ,ψ〉=

´
φ ∗ψ for functions φ ,ψ that decay sufficiently

rapidly, and 〈ψ, Ĥψ〉=
´
(|∇ψ|2 +V |ψ|2) via integration

by parts.

(a) Sketch the band diagram ω(k) that you would expect
to get for this problem for eigenfunctions of the form
ψ(y)eikx. Given an explicit formula for the analogue
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V(y) < 0 on average

V = 0

V = 0x
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|y| < h

Figure 2: Schematic of an x-invariant function V (y) that
= 0 for |y| > h and is otherwise “mostly” negative, i.e.´

∞

−∞
V (y)dy < 0.
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Figure 3: TM band diagram of a square lattice (lattice
constant a) of circular dielectric rods (right inset) plotted
around the boundary of the irreducible Brillouin zone (left
inset). Various points (black dots) are labelled with letters
(a–f) for future reference.

of the “light cone” here (the propagating solutions in
the |y| → ∞ regions)?

(b) The smallest ω minimizes the Rayleigh quotient
〈ψ,Ĥψ〉
〈ψ,ψ〉 . Use this fact, along with a suitable trial

function (similar to homework) to show that there is
at least one guided mode below the light cone for
every k 6= 0.

[Recall from homework/class Lebesgue’s dom-
inated convergence theorem: you can interchange
limits and integrals for

´
f (y) if | f (y)| ≤ g(y) for

some g(y) with
´

g < ∞.]

Problem 3: Projected band diagram
The TM band diagram of a square lattice (lattice constant
a) of circular dielectric rods is shown in figure 3. In class,
we considered linear defects along the Γ–X direction (e.g.

Figure 4: Linear defect in the diagonal (Γ–M) direction
of a square lattice of rods formed by removing N = 3
adjacent diagonal rows of rods (removed rods shown as
dashed outlines).

removing a row of rods). Here, we will consider linear
defects along the Γ–M (diagonal) direction, with period
a
√

2 along that direction.

(a) Sketch the projected band diagram along the Γ–M
direction: plot the first two bands of the periodic
crystal as a function of the component kd of k along
this direction, for the irreducible Brillouin zone in kd .

(i) Recall that the M point is (π

a ,
π

a ). Given that
the period is a

√
2, where is the edge of the Bril-

louin zone in kd along the Γ–M segment?

(ii) On your plot, label with letters a–f the points
corresponding to those labelled locations in fig-
ure 3.

(iii) Be sure to shade any continuous ranges of ω

that occur when you project the original Bril-
louin zone onto your (kd ,ω) plot.

(b) Sketch (qualitatively) your best guess for the pro-
jected band diagram including the modes of a de-
fect where N adjacent diagonal rows of rods are re-
moved (e.g. as shown in figure 4 for N = 3). Sketch
what happens as N increases, and in the limit as
N → ∞. You may assume that there are no surface
states for this crystal termination. [Hint: it might be
easier to start with the N→ ∞ limit and then sketch
what happens as N decreases.]
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