Note on decomposing functions into partner functions

Steven G. Johnson, MIT Course 18.369
February 22, 2016

In the representation-theory handout for 18.369, it says that any function \(\psi(\vec{x}) \) can be decomposed into a sum of partner functions of the different irreps of any symmetry group \(G \). Recall that for a coordinate transformation \(g \) (a rotation or translation), I denote the corresponding transformation of functions \(\psi \) by \(\hat{O}_g \).\(^1\) What follows is a brief proof of that.

1. Consider the set \(S = \{ \hat{O}_g \psi \text{ for all } g \in G \} \). Form a basis \(\psi_i \) of \(S \), for \(i \in \{ 1, \ldots, d \} \) where \(d \) is the dimension of the subspace spanned by \(S \) (the number of linearly independent functions in \(S \)).

2. By construction, \(\hat{O}_g \psi_j \in S \) for any \(j \in \{ 1, \ldots, d \} \), \(g \in G \). Hence \(\hat{O}_g \psi_j = \sum_{i=1}^d \psi_i D_{ij}(g) \) where \(D_{ij}(g) \) are some coefficients depending on \(i \), \(j \), and \(g \).

3. The matrices \(D(g) \) with entries \(D_{ij}(g) \) form a representation of \(G \). Proof:

\[
\hat{O}_{g_1} \hat{O}_{g_2} \psi_j = \hat{O}_{g_1g_2} \psi_j = \sum_{i=1}^d \psi_i D_{ij}(g_1g_2) \\
= \sum_{i=1}^d \psi_i \left[\sum_{k=1}^d D_{ik}(g_1) D_{kj}(g_2) \right] \\
= \sum_{i=1}^d \sum_{k=1}^d \psi_i D_{ik}(g_1) D_{kj}(g_2).
\]

Comparing the first and last lines, which must be true for any \(i, j \), we find \(D_{ij}(g_1g_2) = \sum_{k=1}^d D_{ik}(g_1) D_{kj}(g_2) \), which is exactly the formula for a matrix multiplication, so \(D(g_1g_2) = D(g_1)D(g_2) \). Hence \(D \) is a representation.

4. \(D \) must be reducible into one or more irreps \(D^{(a)} \) of \(G \), i.e. we can perform a change of basis to \(\tilde{D} = S^{-1}DS \) that block-diagonalize \(\tilde{D} \) into irreps. Perform the same change of basis on \(\psi_i \) to obtain the corresponding basis functions \(\tilde{\psi}_j = \sum_i \psi_i S_{ij} \). By construction, the \(\tilde{\psi}_j \) are partners of \(\tilde{D} \), and hence they are partners of the irreps that \(\tilde{D} \) reduces into.

5. \(\psi \in S \) since the identity \(E \in G \), so \(\psi \) is in the span of the basis functions \(\psi_i \) and hence of \(\tilde{\psi}_i \). Hence \(\psi = \sum_i c_i \tilde{\psi}_i \) for some coefficients \(c_i \), which from above is a sum of partner functions of one or more of various irreps of \(G \). (Note it is easy to show that the partner functions of an irrep form a vector space: summing two partners of the same irrep or multiplying them by scalars \(c_i \) yields another partner function.) Q.E.D.

\(^1\)Some authors just use \(g \) interchangeably for rotations of the coordinate space or rotations of the Hilbert space, but for vector fields it is confusing if you don’t distinguish the two. In hindsight, maybe I should have used \(\hat{g} \) instead of \(\hat{O}_g \); oh well.