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It is a remarkable fact [1] that Maxwell’s equa-
tions under any coordinate transformation can
be written in an identical “Cartesian” form, if
simple transformations are applied to the ma-
terials (ε and µ), the fields (E and H), and the
sources (ρ and J). This result has numerous use-
ful and/or beautiful consequences, from designs
of “invisibility cloaks” [2], to a simple derivation
of PML absorbing boundaries [3], to enabling
analyses of bent and twisted waveguides in terms
analogous to a quantum Stark effect [4] , to pro-
viding a simple way of applying numerical meth-
ods designed for Cartesian coordinates to other
coordinate systems [1].

Here, we review the proof in a compact form
(from [5]), generalized to arbitrary anisotropic
media. (Most previous derivations seem to have
been for isotropic media in at least one coordi-
nate frame [1], or for coordinate transformations
with purely diagonal Jacobians J where Jii de-
pends only on xi [3], or for constant affine coor-
dinate transforms [6].)

Summary of the Result
Maxwell’s equations in Cartesian coordinates x
are written (in natural units ε0 = µ0 = 1):

∇×H = ε
∂E
∂t

+ J (1)

∇×E = −µ∂H
∂t

(2)

∇ · (εE) = ρ (3)
∇ · (µH) = 0, (4)

where J and ρ are the usual free current and
charge densities, respectively, and ε(x) and µ(x)
are the 3 × 3 relative permittivity and perme-
ability tensors, respectively. Now, suppose that
we make some (differentiable) coordinate trans-
formation x 7→ x′ (usually chosen to be non-
singular, with some exceptions [2]). Let J de-
note the 3× 3 Jacobian matrix:

Jij =
∂x′i
∂xj

. (5)

We will show that Maxwell’s equations take on
the same form (1–4) in the primed coordinate
system, with ∇ replaced by ∇′, if we make the
transformations:

E′ = (J T )−1E, (6)

H′ = (J T )−1H, (7)

ε′ =
J εJ T

det J , (8)

µ′ =
JµJ T

det J , (9)

J′ =
J J

det J , (10)

ρ′ =
ρ

det J , (11)

where J T is the transpose.
Note that, even if we start out with isotropic

materials (scalar ε and µ), after a coordinate
transformation we in general obtain anisotropic
materials (tensors ε′ and µ′).

For example, if x′ = sx for some scale factor
s 6= 0, then ε′ = ε/s and µ′ = µ/s, which is pre-
cisely the material scaling required to keep e.g.
the eigenfrequencies fixed under a rescaling of a
structure. Note also that if s = −1, i.e. a coordi-
nate inversion, then we set E′ = −E, H′ = −H,
ε′ = −ε and µ′ = −µ, and the system switches
“handed-ness” (flipping the sign of the refractive
index). [A more common alternative choice in
that case would be to set H′ = H, transform-
ing H as a pseudovector [7], while keeping ε and
µ unchanged. This corresponds to sprinkling a
few factors of sign(det J ) in the above equations,
which we are free to do as long as the sign is con-
stant.]
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Proof
We will proceed in index notation, employing
the Einstein convention whereby repeated in-
dices are summed over. Eq. (1) is now expressed:

∂aHbεabc = εcd
∂Ed

∂t
+ Jc (12)

where εabc is the usual Levi-Civita permutation
tensor and ∂a = ∂/∂xa. Under a coordinate
change x 7→ x′, if we let Jab = ∂x′

a

∂xb
be the

(non-singular) Jacobian matrix associated with
the coordinate transform (which may be a func-
tion of x), we have

∂a = Jba∂
′
b. (13)

Furthermore, as in eqs. (6–7), let

Ea = JbaE
′
b, (14)

Ha = JbaH
′
b. (15)

Hence, eq. (12) becomes

Jia∂
′
iJjbH

′
jεabc = εcdJld

∂E′l
∂t

+ Jc. (16)

Here, the Jia∂
′
i = ∂a derivative falls on both

the Jjb and H ′j terms, but we can eliminate the
former thanks to the εabc: ∂aJjbεabc = 0 because
∂aJjb = ∂bJja. Then, again multiplying both
sides by the Jacobian Jkc, we obtain

JkcJjbJia∂
′
iH
′
jεabc = JkcεcdJld

∂E′l
∂t

+ JkcJc

(17)
Noting that JiaJjbJkcεabc = εijk det J by defi-
nition of the determinant, we finally have

∂′iH
′
jεijk =

1
det J JkcεcdJld

∂E′l
∂t

+
JkcJc

det J (18)

or, back in vector notation,

∇′ ×H′ =
J εJ T

det J
∂E′

∂t
+ J′, (19)

where J′ = J J/ det J according to (10). Thus,
we see that we can interpret Ampere’s Law in
arbitrary coordinates as the usual equation in
Euclidean coordinates, as long as we replace the
materials etc. by eqs. (6–8). By an identical
argument, we obtain

∇′ ×E′ = −JµJ T

det J
∂H′

∂t
, (20)

which yields the transformation (9) for µ.
The transformation of the remaining diver-

gence equations into equivalent forms in the new

coordinates is also straightforward. Gauss’ Law,
eq. (3), becomes

ρ = ∂aεabEb = Jia∂
′
iεabJjbE

′
j

= Jia∂
′
i(det J )J−1

ak ε
′
kjE

′
j

= (detJ )∂′iε
′
ijE
′
j + (∂aJ−1

ak det J )ε′kjE
′
j

= (detJ )∂′iε
′
ijE
′
j , (21)

which gives ∇′ · (ε′E′) = ρ′ for ρ′ = ρ/ det J ,
corresponding to eq. (11). Similarly for eq. (4).
Here, we have used the fact that

∂aJ−1
ak det J = ∂aεanmεkijJinJjm/2 = 0, (22)

from the cofactor formula for the matrix inverse,
and recalling that ∂aJjbεabc = 0 from above. In
particular, note that ρ = 0 ⇐⇒ ρ′ = 0 and
J = 0 ⇐⇒ J′ = 0, so a non-singular coordinate
transformation preserves the absence (or pres-
ence) of sources.d

References
[1] A. J. Ward and J. B. Pendry, “Refraction and

geometry in Maxwell’s equations,” J. Modern
Optics, vol. 43, no. 4, pp. 773–793, 1996.

[2] J. B. Pendry, D. Schurig, and D. R. Smith,
“Controlling electromagnetic fields,” Science,
vol. 312, pp. 1780–1782, 2006.

[3] F. L. Teixeira and W. C. Chew, “Gen-
eral closed-form PML constitutive tensors to
match arbitrary bianisotropic and dispersive
linear media,” IEEE Microwave and Guided
Wave Lett., vol. 8, no. 6, pp. 223–225, 1998.

[4] S. G. Johnson, M. Ibanescu, M. Skorobo-
gatiy, O. Weisberg, T. D. Engeness, M. Sol-
jačić, S. A. Jacobs, J. D. Joannopoulos,
and Y. Fink, “Low-loss asymptotically single-
mode propagation in large-core OmniGu-
ide fibers,” Optics Express, vol. 9, no. 13,
pp. 748–779, 2001.

[5] C. Kottke, A. Farjadpour, and S. G. Johnson,
“Perturbation theory for anisotropic dielec-
tric interfaces, and application to sub-pixel
smoothing of discretized numerical meth-
ods,” Phys. Rev. E, vol. 77, p. 036611, 2008.

[6] I. V. Lindell, Methods for Electromagnetic
Fields Analysis. Oxford, U.K.: Oxford Univ.
Press, 1992.

[7] J. D. Jackson, Classical Electrodynamics.
New York: Wiley, third ed., 1998.

2


