Understanding Resonant Systems

[Schliesser et al., *PRL* **97**, 243905 (2006)]

- Option 1: Simulate the whole thing exactly
 - many powerful numerical tools
 - limited insight into a single system
 - can be difficult, especially for weak effects (nonlinearities, etc.)
- Option 2: Solve each component separately, couple with explicit perturbative method (one kind of "coupled-mode" theory)

Option 3: abstract the geometry into its most generic form

 ...write down the *most general* possible equations
 ...constrain by fundamental laws (conservation of energy)
 ...solve for universal behaviors of a whole class of devices
 ...characterized via specific parameters from option 2

"Temporal coupled-mode theory"

- Generic form developed by Haus, Louisell, & others in 1960s & early 1970s, many variations...
 - Haus, Waves & Fields in Optoelectronics (1984)
 - Very general description/derivation: Suh, Wang, & Fan (2004)
 - Reviewed in our *Photonic Crystals: Molding the Flow of Light*, 2nd ed., ab-initio.mit.edu/book
- Equations are generic ⇒ reappear in many forms in many systems, rederived in many ways (e.g. Breit–Wigner scattering theory)
 - full generality is not always apparent

(modern name coined by S. Fan @ Stanford)

TCMT example: a linear filter

Temporal Coupled-Mode Theory

for a linear filter

Temporal Coupled-Mode Theory

for a linear filter

Resonant Filter Example

Lorentzian peak, as predicted.

An apparent miracle:

~ 100% transmission at the resonant frequency

cavity decays to input/output with *equal rates* – At resonance, reflected wave destructively interferes with backwards-decay from cavity & the two *exactly cancel*.

Some interesting resonant transmission processes

Wireless resonant power transfer [M. Soljacic, MIT (2007)] witricity.com

Resonant LED emission luminus.com

(narrow-band) resonant absorption in a thin-film photovoltaic [e.g. Ghebrebrhan (2009)]

Another interesting example: Channel-Drop Filters

Perfect channel-dropping if:

Two resonant modes with:

- even and odd symmetry
- equal frequency (degenerate)
- equal decay rates

o	\circ	٥	\diamond	٥	$^{\circ}$	٥	٥	$^{\circ}$	\diamond	\diamond	$^{\circ}$	٥	٥	٥	٥	٥	٥	0	0	\circ	\circ	$^{\circ}$	$^{\circ}$	٥	\diamond	$^{\circ}$	\diamond	٥	\diamond	$^{\circ}$	٥	٥	٥	٥	$^{\circ}$	$^{\circ}$	◦=====
○	\circ	\diamond	\diamond	٥	$^{\circ}$	$^{\circ}$	$^{\circ}$	\diamond	\diamond	\diamond	$^{\circ}$	$^{\circ}$	٥	\diamond	$^{\circ}$	\diamond	\diamond	$^{\circ}$	\diamond	$^{\circ}$	$^{\circ}$	$^{\circ}$	$^{\circ}$	\diamond	$^{\circ}$	٥	$^{\circ}$	$^{\circ}$	◦=====								
<u> </u>	0	\diamond	\diamond	0	\circ	\diamond	\circ	0	\diamond	\diamond	\circ	0	$^{\circ}$	\diamond	\circ	\circ	\diamond	\circ	$^{\circ}$	0	0	\diamond	\diamond	\diamond	\diamond	$^{\circ}$	\diamond	\diamond	$^{\circ}$	$^{\circ}$	$^{\circ}$	\diamond	\diamond	$^{\circ}$	$^{\circ}$	$^{\circ}$	◦====
<u> </u>	0	0	\circ	0	0	0	0	0	0	0	0	0	0	0	0	0	\circ	0	0	0	0	0	\diamond	\diamond	\diamond	$^{\circ}$	\diamond	\diamond	\diamond	$^{\circ}$	$^{\circ}$	\diamond	\diamond	$^{\circ}$	$^{\circ}$	$^{\circ}$	∘
<u> </u>	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	\diamond	\diamond	\diamond	$^{\circ}$	\diamond	$^{\circ}$	$^{\circ}$	$^{\circ}$	$^{\circ}$	\diamond	$^{\circ}$	٥	$^{\circ}$	$^{\circ}$	∘
0	0	¢	\diamond	0	$^{\circ}$	0	\diamond	0	\diamond	\diamond	\circ	0	0	0	0	٥	0	0	0	0	0	0	0	0	\diamond	$^{\circ}$	\diamond	$^{\circ}$	$^{\circ}$	$^{\circ}$	$^{\circ}$	\diamond	\diamond	٥	$^{\circ}$	$^{\circ}$	∘
o	\circ	\diamond	\diamond	0	$^{\circ}$	$^{\circ}$	\circ	$^{\circ}$	\circ	\diamond	$^{\circ}$	\circ	0	0	0	*	0	0	0	0	*	0	0	0	\circ	$^{\circ}$	\diamond	$^{\circ}$	\circ	$^{\circ}$	$^{\circ}$	\diamond	$^{\circ}$	$^{\circ}$	$^{\circ}$	$^{\circ}$	∘
o	\circ	\diamond	\diamond	0	$^{\circ}$	$^{\circ}$	$^{\circ}$	\circ	\circ	\circ	$^{\circ}$	$^{\circ}$	0	0	0	0	0	0	0	0	0	0	0	0	\circ	0	\circ	$^{\circ}$	\circ	0	0	\circ	$^{\circ}$	0	$^{\circ}$	\circ	°
o	\circ	\diamond	$^{\circ}$	0	$^{\circ}$	$^{\circ}$	$^{\circ}$	$^{\circ}$	\circ	$^{\circ}$	$^{\circ}$	$^{\circ}$	٥	$^{\circ}$	0	0	0	0	0	0	0	0	\circ	0	\circ	0	0	0	0	0	0	0	0	0	0	0	°
o	\circ	\diamond	\diamond	0	$^{\circ}$	$^{\circ}$	$^{\circ}$	$^{\circ}$	\circ	\diamond	$^{\circ}$	$^{\circ}$	$^{\circ}$	\diamond	0	0	0	0	0	\circ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	°
o	\circ	\diamond	\diamond	0	$^{\circ}$	$^{\circ}$	$^{\circ}$	\diamond	\diamond	\diamond	$^{\circ}$	$^{\circ}$	\diamond	\diamond	$^{\circ}$	\circ	\circ	$^{\circ}$	\circ	\circ	0	0	\circ	0	\diamond	0	\circ	\circ	\circ	0	$^{\circ}$	0	\circ	0	\circ	\circ	° — —
o	\circ	0	\diamond	0	$^{\circ}$	\diamond	\diamond	$^{\circ}$	\diamond	\diamond	$^{\circ}$	$^{\circ}$	\diamond	٥	0	\diamond	\diamond	$^{\circ}$	$^{\circ}$	$^{\circ}$	\circ	\circ	$^{\circ}$	٥	$^{\circ}$	\circ	\diamond	$^{\circ}$	\diamond	$^{\circ}$	$^{\circ}$	\diamond	\diamond	$^{\circ}$	$^{\circ}$	$^{\circ}$	◦====
o	\circ	0	$^{\circ}$	0	$^{\circ}$	\diamond	\diamond	$^{\circ}$	\diamond	$^{\circ}$	$^{\circ}$	0	\diamond	٥	0	\diamond	\diamond	$^{\circ}$	$^{\circ}$	$^{\circ}$	$^{\circ}$	$^{\circ}$	$^{\circ}$	0	$^{\circ}$	$^{\circ}$	\diamond	$^{\circ}$	\circ	$^{\circ}$	$^{\circ}$	\diamond	\diamond	0	$^{\circ}$	$^{\circ}$	◦====

[S. Fan et al., Phys. Rev. Lett. 80, 960 (1998)]

Dimensionless Losses: $Q = \omega_0 \tau / 2$

quality factor Q = # optical periods for energy to decay by $exp(-2\pi)$

energy ~
$$\exp(-\omega_0 t/Q) = \exp(-2t/\tau)$$

in frequency domain: 1/Q = bandwidth

More than one Q... A simple model device (filters, bends, ...): losses Or (radiation/absorption) Q_{W} **Output Waveguide** Input Waveguide Cavity $\frac{1}{0} = \frac{1}{0} + \frac{1}{0}$ We want: $Q_r >> Q_w$ $TCMT \Rightarrow$ $1 - \text{transmission} \sim 2Q / Q_r$ Q = lifetime/period= frequency/bandwidth

worst case: high-Q (narrow-band) cavities

Nonlinearities + Microcavities?

weak effects $\Delta n < 1\%$

very intense fields & sensitive to small changes

A simple idea: for the same input power, nonlinear effects are stronger in a microcavity

That's not all! nonlinearities + microcavities = qualitatively new phenomena

Nonlinear Optics

Kerr nonlinearities $\chi^{(3)}$: (polarization ~ E^3)

- Self-Phase Modulation (SPM)
 - = change in refractive index(ω) ~ $|\mathbf{E}(\omega)|^2$
- Cross-Phase Modulation (XPM)

= change in refractive index(ω) ~ $|\mathbf{E}(\omega_2)|^2$

- Third-Harmonic Generation (THG) & down-conversion (FWM) = $\omega \rightarrow 3\omega$, and back $\omega \rightarrow \omega$
- etc... $\omega \longrightarrow 3\omega$

Second-order nonlinearities $\chi^{(2)}$: (*polarization* ~ E^2)

- Second-Harmonic Generation (SHG) & down-conversion = $\omega \rightarrow 2\omega$, and back
- Difference-Frequency Generation (DFG) = $\omega_1, \omega_2 \rightarrow \omega_1 \omega_2$
- etc...

Nonlinearities + Microcavities?

weak effects $\Delta n < 1\%$

very intense fields
& sensitive to small changes

A simple idea:

for the same input power, nonlinear effects are stronger in a microcavity

That 's not all! nonlinearities + microcavities = *qualitatively* new phenomena

let's start with a well-known example from 1970's...

Linear response:

Lorenzian Transmisson

Optical Bistability

[Felber and Marburger., Appl. Phys. Lett. 28, 731 (1978).]

rectifiers, amplifiers, isolators, ...

[Soljacic *et al.*, *PRE Rapid. Comm.* **66**, 055601 (2002).]

Bistable (hysteresis) response (& even multistable for multimode cavity)

Power threshold ~ V/Q^2 (in cavity with V ~ $(\lambda/2)^3$, for Si and telecom bandwidth power $\sim mW$)

TCMT for Bistability

[Soljacic et al., PRE Rapid. Comm. 66, 055601 (2002).]

Accuracy of Coupled-Mode Theory

[Soljacic et al., PRE Rapid. Comm. 66, 055601 (2002).]

Optical Bistability in Practice

[Notomi *et al.* (2005).]

 $Q \sim 30,000$ V ~ 10 optimum Power threshold ~ 40 μ W

Q ~ 10,000 V ~ 300 optimum Power threshold ~ 10 mW

THG in Doubly-Resonant Cavities

[publications from our group: H. Hashemi (2008) & A. Rodriguez (2007)]

- must precisely tune ω_3 / ω_1 - materials must be ok at ω_1 and $3\omega_1$

Not easy to make at micro-scale

But ... what if we could do it? ... what are the consequences?

e.g. ring resonator with proper geometry

Coupled-mode Theory for THG third harmonic generation

[Rodriguez et al. (2007)]

Detuning for Kerr THG

because of SPM/XPM, the input power changes resonant ω

compensate by pre-shifting resonance so that at $P_{in} = P_{crit}$ we have $\omega_3 = 3 \omega_1$

Stability and Dynamics? *brief review*

Steady state-solution: a_1 oscillating at ω_1 , a_3 at ω_3 — rewrite equations in terms of $A_1 = a_1 e^{i\omega_1 t}$ $A_3 = a_3 e^{i\omega_3 t}$

then steady state = A_1 , A_3 constant = fixed-point

cartoon phase space (A_1 , A_3 are actually complex)

for simplicity, assume SPM = XPM coefficients: $\alpha_{11} = \alpha_{33} = \alpha_{13} = \alpha_{31} = \alpha$

Bifurcation with Input Power

cartoon phase space (A_1 , A_3 are actually complex)

