
Understanding Resonant Systems

[ Schliesser et al.,
PRL 97, 243905 (2006) ]

• Option 1: Simulate the whole thing exactly
— many powerful numerical tools
— limited insight into a single system
— can be difficult, especially for

weak effects (nonlinearities, etc.)

• Option 2: Solve each component separately,
couple with explicit perturbative method
(one kind of �coupled-mode� theory)

• Option 3: abstract the geometry into its most generic form
…write down the most general possible equations

…constrain by fundamental laws (conservation of energy)
…solve for universal behaviors of a whole class of devices

… characterized via specific parameters from option 2



“Temporal coupled-mode theory”

• Generic form developed by Haus, Louisell, & others in 
1960s & early 1970s, many variations…
– Haus, Waves & Fields in Optoelectronics (1984)
– Very general description/derivation: Suh, Wang, & Fan (2004)
– Reviewed in our Photonic Crystals: Molding the Flow of Light, 

2nd ed., ab-initio.mit.edu/book

• Equations are generic ⇒ reappear in many forms in many 
systems, rederived in many ways (e.g. Breit–Wigner scattering 
theory)
– full generality is not always apparent

(modern name coined by S. Fan @ Stanford)



TCMT example: a linear filter

420 nm

[ Notomi et al. (2005). ]
[ C.-W. Wong,

APL 84, 1242 (2004). ]

[ Takano et al. (2006) ] 

[ Ou & Kimble (1993) ]

= abstractly:
two single-mode i/o ports 

+ one resonance

resonant cavity
frequency ω0, lifetime τ

po
rt 

1 port 2



Temporal Coupled-Mode Theory
for a linear filter

ainput output
s1+
s1– s2–

resonant cavity
frequency ω0, lifetime τ |s|2 = power

|a|2 = energy

da
dt

= −iω0a −
2
τ
a + 2

τ
s1+

s1− = −s1+ +
2
τ
a, s2− =

2
τ
a

assumes only:
• exponential decay

(strong confinement)
• linearity
• conservation of energy
• time-reversal symmetry

⎧
⎨
⎪

⎩⎪
can be

relaxed



Temporal Coupled-Mode Theory
for a linear filter

ainput output
s1+
s1– s2–

resonant cavity
frequency ω0, lifetime τ |s|2 = flux

|a|2 = energy

transmission T
= | s2– |2 / | s1+ |2

1

w0

T = Lorentzian filter

=

4
τ 2

ω −ω0( )2 + 4
τ 2

w



Resonant Filter Example

Lorentzian peak, as predicted.

An apparent miracle:

~ 100% transmission
at the resonant frequency

cavity decays to input/output with equal rates
– At resonance, reflected wave

destructively interferes
with backwards-decay from cavity

& the two exactly cancel.



Some interesting resonant 
transmission processes

Wireless resonant power transfer
[ M. Soljacic, MIT (2007) ]

witricity.com

Resonant
LED emission
luminus.com

(narrow-band) 
resonant
absorption in
a thin-film
photovoltaic

[ e.g. Ghebrebrhan (2009) ]

input
power

output
power
~ 40% eff.



Another interesting example: Channel-Drop Filters

[ S. Fan et al., Phys. Rev. Lett. 80, 960 (1998) ]

Perfect channel-dropping if:

Two resonant modes with:
• even and odd symmetry
• equal frequency (degenerate)
• equal decay rates

Coupler

waveguide 1

waveguide 2

(mirror plane)



Dimensionless Losses: Q

1

w0

T = Lorentzian filter

=

4
τ 2

ω −ω0( )2 + 4
τ 2

w

FWHM
1
Q

=
2

ω0τ

…quality factor Q

quality factor Q = # optical periods for energy to decay by exp(–2π)

energy ~ exp(–ω0t/Q) = exp(–2t/τ) 

in frequency domain: 1/Q = bandwidth

from temporal
coupled-mode theory:

Q = ω0τ / 2



More than one Q…

Qw

A simple model device (filters, bends, …):

Qr

Q
1

Qr
1

Qw
1= +

Q = lifetime/period
= frequency/bandwidth

We want: Qr >> Qw

1 – transmission ~ 2Q / Qr

worst case: high-Q (narrow-band) cavities

losses
(radiation/absorption)

TCMT ⇒



Nonlinearities + Microcavities?
weak effects
∆n < 1%

very intense fields
& sensitive to small changes

A simple idea:
for the same input power, nonlinear effects
are stronger in a microcavity

That�s not all!
nonlinearities + microcavities

= qualitatively new phenomena



Nonlinear Optics
Kerr nonlinearities χ(3): (polarization ~ E3)

• Self-Phase Modulation (SPM)
= change in refractive index(ω) ~ |E(ω)|2

• Cross-Phase Modulation (XPM)
= change in refractive index(ω) ~ |E(ω 2) |2

• Third-Harmonic Generation (THG) & down-conversion (FWM)
= ω→ 3ω, and back

• etc…
ω
ω
ω

3ω
ω

ω
ω

Second-order nonlinearities χ(2):  (polarization ~ E2)
• Second-Harmonic Generation (SHG) & down-conversion

= ω→ 2ω, and back
• Difference-Frequency Generation (DFG) = ω1, ω2 → ω1-ω2 
• etc…



Nonlinearities + Microcavities?
weak effects
∆n < 1%

very intense fields
& sensitive to small changes

A simple idea:
for the same input power, nonlinear effects
are stronger in a microcavity

That�s not all!
nonlinearities + microcavities

= qualitatively new phenomena

let’s start with a well-known example from 1970’s…



A Simple Linear Filter

in out

Linear response:
Lorenzian Transmisson



Filter + Kerr Nonlinearity?

in out

Linear response:
Lorenzian Transmisson shifted peak?

+ nonlinear
index shift
= ω shift

Kerr nonlinearity:
∆n ~ |E|2



stable

stable
unstable

Optical Bistability

Bistable (hysteresis) response
(& even multistable for multimode cavity)

Logic gates, switching,
rectifiers, amplifiers,

isolators, …

[ Felber and Marburger., Appl. Phys. Lett. 28, 731 (1978). ]

Power threshold ~ V/Q2

(in cavity with V ~ (λ/2)3,
for Si and telecom bandwidth 

power ~ mW)

[ Soljacic et al.,
PRE Rapid. Comm. 66, 055601 (2002). ]



TCMT for Bistability
[ Soljacic et al., PRE Rapid. Comm. 66, 055601 (2002). ]

ainput outputs1+ s2–
resonant cavity

frequency ω0, lifetime τ, 
SPM coefficient α ~ χ(3)

(from perturbation theory)

|s|2 = power
|a|2 = energy

da
dt

= −i(ω0 −α a 2 )a − 2
τ
a + 2

τ
s1+

s1− = −s1+ +
2
τ
a, s2− =

2
τ
a

gives cubic equation
for transmission

… bistable curve



Accuracy of Coupled-Mode Theory

semi-analytical

numerical

[ Soljacic et al., PRE Rapid. Comm. 66, 055601 (2002). ]



Optical Bistability in Practice

420 nm

[ Notomi et al. (2005). ]
[ Xu & Lipson, 2005 ]

Q ~ 30,000
V ~ 10 optimum

Power threshold ~ 40 µW

10µm

Q ~ 10,000
V ~ 300 optimum

Power threshold ~ 10 mW



THG in Doubly-Resonant Cavities

input/output channel
cavity
ω1

ω3=3ω1

Q1

Q3

χ(3)

Not easy to make at micro-scale
— must precisely tune ω3 / ω1
— materials must be ok at ω1 and 3ω1

But … what if we could do it?
…  what are the consequences?

e.g. ring resonator
with proper geometry

[ publications from our group: H. Hashemi (2008) & A. Rodriguez (2007) ]



Coupled-mode Theory for THG
third harmonic generation

THG

down-
conversion

SPM XPM

SPM XPM

[ Rodriguez et al. (2007) ]



α=0: Critical Power for Efficient THG
TH

G
 c
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reflection
at ω1

input power Pin at ω1

Pcrit ~ V/Q2

~ mW for Si, 
telecom bandwidth

& λ-scale cavity

third-harmonic generation in doubly-resonant χ(3) (Kerr) cavity

[ Rodriguez
et al. (2007) ]



Detuning for Kerr THG
ω c

av
/ ω

in

[ Hashemi et al (2008) ]

because of SPM/XPM,
the input power
changes resonant ω
…
compensate by
pre-shifting resonance
so that at Pin = Pcrit
we have ω3= 3 ω1



Stability and Dynamics?
brief review

Steady state-solution: a1 oscillating at ω1, a3 at ω3
— rewrite equations in terms of A1 = a1 eiω1t

A3 = a3 eiω3t

then steady state = A1, A3 constant = fixed-point

A1

A3

cartoon phase space (A1, A3 are actually complex)

fixed pointfixed point
stable unstable



for simplicity, assume SPM = XPM coefficients:
α11 = α33 = α13 = α31 = α



THG Stability Phase Diagram

unstable 100%-efficiency —
lower-efficiency stable solutions

SPM+XPM / THG

[ Hashemi et al (2008) ]



Bifurcation with Input Power
TH
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[ Hashemi et al 
(2008) ]



Limit Cycles
Steady state-solution: a1 oscillating at ω1, a3 at ω3

— rewrite equations in terms of A1 = a1 eiω1t

A3 = a3 eiω3t

then steady state = A1, A3 constant = fixed-point

A1

A3

cartoon phase space (A1, A3 are actually complex)

fixed point
fixed point

stable

unstable

limit cycle
= stable oscillating solution



Stability Phase Diagram

unstable 100%-efficiency —
lower-efficiency stable solutions

+ limit cycles

[ Hashemi et al (2008) ]
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An Optical Kerr-THG Oscillator
[ analogous to self-pulsing in SHG; Drummond (1980) ]

[ Hashemi et al 
(2008) ]


