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What is a laser?

•   a laser is a resonant cavity…
•   with a gain medium…
•   pumped by external power source     

population inversion à stimulated emission 



420 nm

[ Notomi et al. (2005). ]

Resonance
an oscillating mode trapped for a long time in some volume

(of light, sound, …)
frequency ω0

lifetime τ >> 2π/ω0
quality factor Q = ω0τ/2

energy ~ e–ω0t/Q

modal
volume V

[ Schliesser et al.,
PRL 97, 243905 (2006) ]

[ Eichenfield et al. Nature Photonics 1, 416 (2007) ]

[ C.-W. Wong,
APL 84, 1242 (2004). ]



How Resonance?
need mechanism to trap light for long time

[ llnl.gov ]

metallic cavities:
good for microwave,
dissipative for infrared

ring/disc/sphere resonators:
a waveguide bent in circle,
bending loss ~ exp(–radius)

[ Xu & Lipson
     (2005) ]

10µm

 [ Akahane, Nature 425, 944 (2003) ]

photonic bandgaps
(complete or partial

+ index-guiding)

VCSEL
[fotonik.dtu.dk]

(planar Si slab)



Passive cavity (lossy)
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linear loss of passive cavity
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Pump ⇒ Gain: nonlinear in field strength
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The steady state
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goals of laser theory: 
for a given laser, determine:

1) thresholds
2) field emission patterns 
3) output intensity 
4) frequencies 

of steady-state operation

[ if there is a steady state]



What’s new in SALT?  Why ab initio?

Lamb Scully Haken

Basic semiclassical theory from early 60’s and much of quantum theory

No general method for accurate solution of the equations for �
arbitrary resonator including non-linearity, openness, multi-mode

Direct numerical solutions in space and time impractical 

SALT: direct solution for the multimode steady-state including �
openness, gain saturation and spatial hole-burning, arbitrary geometry

Ab Initio: Only inputs are constants describing the gain medium, 
quantitative agreement with brute force simulations



 Complex microcavities: micro-disks,micro-toroids, 
deformed disks (ARCs), PC defect mode, random…

Motivation: Modern micro/nano lasers

No boundary 
reflection at all!

No measurable passive 
resonances



Semiclassical theory
1. Maxwell’s equations (classical) 

cavity dielectric polarization of gain atoms



Semiclassical theory
1. Maxwell’s equations (classical) 

cavity dielectric polarization of two-
level gain atoms

atomic frequency population inversion
(drives oscillation)

2. Damped oscillations of electrons in atoms (quantum) 
1



Semiclassical theory
1. Maxwell’s equations

cavity dielectric polarization of two-
level gain atoms

2. Damped oscillations of electrons in atoms

atomic frequency population inversion
(drives oscillation)

3. Rate equation for population inversion

phenomenological relaxation rates (from collisions, etc)

rate of work done on 
“polarization current”

1



Maxwell–Bloch equations
•  fully time-dependent, multiple unknown fields, nonlinear 

(Haken, Lamb, 1963)

Inversion drives 
polarization

Polarization 
induces inversion1



Maxwell–Bloch FDTD simulations 
very expensive, but doable

Bermel et. al. (PRB 2006)



Problem: timescales!

FDTD takes very long time to 
converge to steady state

Solving Maxwell–Bloch for just one 
set of lasing parameters is expensive 
and slow, let alone design



Advantage: timescales!

-  hard for numerics
-  good for analysis



Ansatz of steady-state modes



Two key approximations

2. stationary-inversion approximation

1. “rotating-wave approximation”
fast oscillation average out to zero; 
all oscillations fast compared to 
inversion

… leads to…



after: 
Steady-State Ab-Initio 

Lasing Theory,
“SALT”

 (Tureci, Stone, 2006)

before

∇×∇×Em =ωm
2εmEm

Still nontrivial to solve: 
equation is nonlinear in both

eigenvalue          ß easier    

eigenvector   ß harder



Constant-flux “CF” basis method
Tureci, Stone, PRA 2006 

(same paper that introduced SALT)

solutions to linear problem at threshold

problem still nonlinear, but 
very small dimensionality



Example of SALT results using CF 
basis method

Ge et al. (PRA 2010)



CF basis method not scalable

1.  far above threshold, expansion efficiency 
decreases, need more basis functions

2.  in most cases basis functions need to be 
obtained numerically

3.  storage in 2d and 3d 



Common pattern for 
theories in physics

1.  purely analytic solutions (handful of cases)
2.  specialized basis (problem-dependent and 

hard to scale to arbitrary systems)
3.  generic grid/mesh, discretize

SALT was here
Can we solve the equations of SALT (which are 
nonlinear) on a grid without an intermediate 
basis?



à “just” solve
… but is it reasonable to solve 104–107 coupled 

nonlinear equations?

degrees of freedom:
       at every point on (Yee) grid
m = 1,2,…# modes

 à finite differences 

 

Finite-difference discretization



Yes! 

Newton: 

key fact #1:
Newton’s method converges very quickly when we 
have a good initial guess (near the actual answer)

key fact # 2:
we have a good initial guess (at threshold, the problem 
is linear in        , easy to solve)



The linear problem is sparse!

=  Jacobian  … sparse

A sparse = good solvers
ex: Matlab “\”, PETSc



must have same number of 
equations as unknowns

2. amplitude as separate unknown 
(to eliminate the trivial E=0 solution)

                      1. frequency         is unknown, and 



must have same number of 
equations as unknowns

2. amplitude as separate unknown 
(to eliminate the trivial E=0 solution)

normalization and phase fixing 
(real and imaginary parts give two equations)

                      1. frequency         is unknown, and 

two extra unknowns, two extra equations, 
Jacobian matrix stays square



How to get initial guesses:
Increase the pump as gradually as needed

threshold:
linear in E
… well known solvers

Newton

Newton converges quadratically given good initial guess 



Benchmark comparison with previous 1d results

1d laser cavity

Benchmarks for ~1000 pixels
Maxwell—Bloch (FDTD)

~60 CPU hours
SALT, Direct Newton

20 CPU seconds!!!

c.f. SALT CF Basis
~5 CPU minutes



Confirmation of known 2d results

mode-switching 
behavior in microdisk 
laser (solid = Newton, 
dotted = basis)

field profile of mode 1



Demonstration of 3d calculation

full-vector simulation of 
lasing defect mode in 
photonic crystal slab

~50 x 50 x 30 pixel 
computational cell:
10 CPU minutes on a laptop 
with SALT + Newton’s method!



Lasers: Quick Review
laser = lossy optical resonance + nonlinear gain

threshold: increase pump until
gain ≥ loss at amplitude=0

confined mode
in gain medium

“pump” energy

mirrors/confinement

gain

loss

nonlinear gain/loss
⇒ stable amplitude

mode
|amplitude|2

[ image: wikipedia ]

above threshold:



Lasers: Quick Review
laser = lossy optical resonance + nonlinear gain

gain

loss

nonlinear gain/loss
⇒ stable amplitude

above threshold:

da1
dt

= C11 a1
0 2 − a1

2( )a1 ⇒ a1 → a1
0

a1
0 2

a1
2

nonlinear
coefficient

a1(t)E1(x)e
−iω1t

steady state
= zero linewidth!

(δ-function spectrum)

toy TCMT model of single-mode laser:

(toy instantaneous
nonlinearity)



Laser noise:

random (quantum/thermal) currents
“kick” the laser mode

⇒ Brownian phase drift = finite linewidth



Johnson–Nyquist Noise

mean 〈I2〉 ≈ 4kT × (1/R) × (bandwidth)

[ Callen & Welton, 1951 ]
→ kT for high T (classical thermal fluctuations)
→ hω/2 for low T (quantum zero-point fluctuations)

Generalization: the Fluctuation–Dissipation Theorem
conductivity
 = ω Im ε

ZP + Bose–Einstein

R
(no relation to me)

[ 1926 ]

random current I from thermal noise:



Consequences of current fluctuations

Fluctuating currents J produce
fluctuating electromagnetic fields.

Fields carry:
   • Momentum ⇒ Casimir forces
   • Energy ⇒ thermal radiation

In a laser: J = random forcing
                    = phase drift
                    = nonzero laser linewidth



Toy TCMT Laser + Noise
[ = nonlinear “van der Pol” oscillator,
      similar to e.g. Lax (1967) ] 

da1
dt

≈C11 a1
0 2 − a1

2( )a1 + f1(t)

lowest-order stochastic ODE:

random
forcing

ωω1

δ fluctuations ⇒
“thermal” background

Lorentzian lineshape,
width Δω = R/2π

~ |a1
0|2

tricky part: getting f & C

a1 = a1
0 +δ1(t)⎡⎣ ⎤⎦e

iϕ1(t )

⇒ … ⇒ <φ2> = Rt 

Brownian (Wiener) phase

linearize:



Laser linewidth theory: Long history
Long history of laser-linewidth theory:
• Gordon (‘55), Schawlow–Townes (‘58): linewidth ~ 1/P
• Petermann (‘79): correction for lossy cavities (complex E)
• Henry (‘82, ‘86): nonlinear phase/amplitude coupling enhancement
• Elsasser (‘85), Kruger (‘90): 2-mode nonlinear linewidth interactions
• generalizations: dispersion, incomplete inversion, nonuniform…

Almost always in 1d, only considering a few corrections at a time…
(e.g. dispersion but not Henry, only homogeneous inversion…)

• Chong (2013): S-matrix combination of many previous corrections
                            (but not Henry factor or inhomogeneous inversion)

… showed that corrections are intermingled in general cavities

Can we solve the full 3d inhomogeneous problem?



Laser theory troubles:

Until recently, it’s been almost impossible to solve for laser 
modes > threshold in complex microcavities (not 1d-like).

difficulty: optical timescale << electron relaxation timescale

Why bother with linewidth theory�
if we can’t solve without noise?



SALT: steady-state ab-initio lasing theory �
= analytical separation of optical/electronic timescales

[ Türeci, Stone, and Collier (2006) ]

∇×∇×Em =ωm
2εmEm

εm = εc (x)+
γ 0

ωm −ω0 + iγ 0
D0 (x,d)

1+ an
γ 0

ωn −ω0 + iγ 0
En

2

n
∑

SALT: “ordinary” EM eigenproblem for lasing modes

with nonlinear permittivity ε:

(Lorentzian gain spectrum, mode amplitudes an)

Limitation: until recently, SALT only solvable in 1d & simple 2d



New SALT Solvers �
= accurate laser modes in new geometries

[ Esterhazy, Liu, Liertzer, Cerjan, Ge, Makris, Stone, Melenk, Johnson, Rotter, arXiv:1312.2488 (2013) ]

∇×∇×Em =ωm
2εmEm

εm = εc (x)+
γ 0

ωm −ω0 + iγ 0
D0 (x,d)

1+ an
γ 0

ωn −ω0 + iγ 0
En

2

n
∑

SALT: “ordinary” EM eigenproblem

with nonlinear permittivity ε

+ full 3d
nonlinear
eigensolvers & 
PDE solvers



Ab-initio laser-linewidth starting point
The Fluctuation–Dissipation Theorem (FDT)

conductivity = ω Im ε

[ Callen & Welton, 1951 ]

In a gain medium, σ < 0 and T ≤ 0– (T < 0– = incomplete inversion)

… these small currents randomly “kick” the SALT lasing modes
⇒ random (Brownian) phase drift ⇒ linewidth

[ related starting point, albeit in greatly simplified 1d media,
used by Henry (1986) ]



Real TCMT equations
[ 2-level gain medium, timescale >> optical ]

Maxwell-Bloch equations:

electric field
polarization density

inversion population

+ rotating-wave approx. (lasing modes dominate) … lots of algebra …

= non-instantaneous, multi-mode nonlinear gain



TCMT coefficients
[ 2-level gain medium, timescale >> optical ]

(essentially = 1st order
   perturbation theory
   for ∂ω/∂|a|2)

currents = forcing F = dJ/dt   ⇒



New 1-mode Linewidth Γ Formula
correct TCMT ⇒ plug in FDT ⇒ ⟨f2⟩ ⇒ solve stochastic ODEs…

α = Imc11
Rec11

⎡

⎣
⎢

⎤

⎦
⎥

Schawlow–Townes
inverse scaling with
radiated power P1

~ generalized Petermann
factor (including “bad cavity”
correction for dispersion),
including incomplete inversion

generalized
Henry α-factor

(spatially varying) incomplete
inversion (& thermal noise)

′′ε = Imε



New predictions:
• Fun fact: “toy” instantaneous nonlinearity gives same Γ!

• Correction from inhomogeneous incomplete inversion
(… in general, all corrections are intermingled …)

• “Bad-cavity” (high-leakage) correction to Henry α factor

• Closed-form generalization to arbitrary multimode lasers
               



in progress…
• Validation against solution of full Maxwell–Bloch equations
    + thermodynamic noise (in 1d) — A. Cerjan (Yale)

• Design a laser (e.g. with “exceptional points”)
where new corrections are much larger

• Additional corrections
     [e.g. amplified spontaneous emission (ASE) for
             “passive” modes just below their lasing thresholds;
             also “colored” noise correction for broad linewidth)

• New SALT models (e.g. semiconductor lasers…)
⇒ new linewidth formulas
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