
Introduction to
finite-difference

frequency-domain (FDFD) method

Wonseok Shin, Ph.D.
Applied Mathematics Instructor

wsshin@mit.edu

1

Why finite difference?

Finite difference method is intuitive and easy.

2

d y
d x
ª
Dy
Dx

Time-domain

Choice of Maxwell’s Equations

Frequency-domain

∇ ⨯� = -� ω μ �
∇ ⨯� = � ω ε � + �

⦁ Shows the transient state.
⦁ Steady state takes long. (Main drawback)

⦁ Does not show the transient state.
⦁ Steady state obtained immediately.

3

∇ ⨯� = -∂�� = -∂� (μ *�)
∇ ⨯� = ∂�� + � = ∂� (ε *�) + �

4

Time-domain Maxwell’s eqs.

Finite-difference method:

Finite-Difference Time-Domain (FDTD) Method

∇ ⨯� = -∂�� = -∂� (μ *�)
∇ ⨯� = ∂�� + � = ∂� (ε *�) + �

∂��� ≈
Δ��
Δ�

� ∂��� ≈
Δ��
Δ�
� …

Time-domain drawback 2: uniform ∆t

Courant stability condition:

5

Time-domain
Maxwell’s eqs.

Δ����
Δ�

≥ �

∇ ⨯� = -∂� (μ *�)
∇ ⨯� = ∂� (ε *�) + �

Courant stability condition:

6

Time-domain
Maxwell’s eqs.

Δ����
Δ�

≥ �

∇ ⨯� = -∂� (μ *�)
∇ ⨯� = ∂� (ε *�) + �

⇒ Slow for simulation with metallic objects

Time-domain drawback 2: uniform ∆t

Inaccurate for dispersive materials

← Need to get ε(t) from this.
⇒ Fit ε(ω) to an analytic function, then FT.

∂HwL = ∂• 1 +‚
i=1

N wp, i
2

w0, i
2 - w2 + ‰wGi

7

Time-domain
Maxwell’s eqs.

∇ ⨯� = -∂� (μ *�)
∇ ⨯� = ∂� (ε *�) + �

Time-domain drawback 3: modeling ε and μ

—âE = - iw mH
—âH = J + iw ∂E

Solution: frequency-domain methods

• Use measured material parameters at specific ω.
• No Δt. ⇒ No penalty for small ∆l.

·
·

8

Frequency-domain
Maxwell’s eqs.

Finite Difference
Method

Frequency Domain
Equations +

FDFD

9

Construction of A x = b

Discretize Maxwell eqs. ⇒ A x = b

11

Discretization Methods

FEM BEM Spectral Method

� � = �

Numerical Linear Algebra Techniques

�� �� ·� �� �� ·� �� �� ·�

Finite-different discretization grid

Δ

Δ

Δ

+

+

Interlaced E and H grid: crucial for 2nd-order error!

Δ��
Δ�

-
Δ��
Δ�

= -� ω μ ��

∇ ⨯� = -� ω μ �Faraday’s law:

∂��� - ∂��� = -� ω μ ��z-component:

FD approximation:

At (i,j,k):

xy-plane of grid:

��(�+�)�� - �����

Δ�
-
���(�+�)� - �����

Δ�
= -� ω μ�

��� �����

Interlaced E and H grid: crucial for 2nd-order error!
� ′(�) ≈

� (� + �) - � (�)
�

� ′(�) ≈
� (� + �) - � (� - �)

� �

� (� + �) = � (�) + � � ′(�) +
�
�
�� �″(�) +

�
�
�� ��(�)⋯

� (� + �) - � (�)
�

= � ′(�) +
�
�
� �″(�) +

�
�
�� ��(�) +⋯ = � ′(�) + �(�)

� (� - �) = � (�) - � � ′(�) +
�
�
�� �″(�) -

�
�
�� ��(�)⋯

� (� + �) - � (� - �)
� �

= � ′(�) +
�
�
�� ��(�) +⋯ = � ′(�) + �����

Forward difference:

Central difference:

Taylor expansion:

Taylor expansion:
(opposite direction)

Linearize (i, j, k) to n

n = 1 2
3

Nx

4

Nx+1Nx+2
Nx+3

2Nx

n = Nx Ny

Linearize (i, j, k) to n

n = Nx Ny+1

n = 2Nx Ny

Nx Ny+2

Nx (Ny+1)

Linearize (i, j, k) to n

�� =

�����

�����

�����

⋮

���� �� ��

� �� =⋯ � �� =⋯

�� =

�����

�����

�����

⋮

���� �� ��

� �� =⋯ � �� =⋯

Collect discretized equations

z-comp of Faraday at (i,j,k):

Collect from all points:

Collect x, y, z-comps:

∇ ⨯� = -� ω μ �

��(�+�)�� - �����

Δ�
-
���(�+�)� - �����

Δ�
= -� ω μ�

��� �����

�
Δ�

-� �
-� �

⋱ ⋱
�� -

�
Δ�

-� �
-� �

⋱ ⋱
�� = -� ω

μ����

μ����

⋱

��

��� �� - ��� �� = -� ω �μ� ��

-��� ���

��� -���

-��� ���

��
��
��

= -� ω
�μ�

�μ�

�μ�

��
��
��

�� � = -� ω �μ �

Repeat for Ampere’s law

Ampere’s law: ∇ ⨯� = � ω ε � + �

Discretize:

Faraday’s law:

-��� ���

��� -���

-��� ���

��
��
��

= � ω
�ε�

�ε�

�ε�

��
��
��

+
��
��
��

�� � = � ω �ε � + �

Eliminate h:

�� � = -� ω �μ � ⟺ � = � ω-� �μ-� �� �

�� �� ω-� �μ-� ��� � = � ω �ε � + �
��� ��-� �� - ω� �ε� � = -� ω �

��� ��-� �� - ω� �ε� � = -� ω �

� � = �
��∇ ⨯μ-� ∇ ⨯� - ω� ε	 � = -� ω �

21

1100nm

1100nm

400nm

632.8nmΛ0 "

x
y

z
vacuumgold

• (wavelength) = 630 nm
• gold: ε/ε₀ = –10.78 – i 0.79
• Δ = 5 nm
• (# of unknowns) = 20 million

z
(µ

m
) 0

1

0.5

−0.5

y (µm)
−0.5 0 0.5

|E|

Example 1: lens made of metallic pillars

22

Example 2: 90° bend in metallic coaxial waveguide

23

Gold bowtie antenna

Practical issues in solving A x = b
(some of my previous research)

There are two kinds of methods to solve A x = b:
direct methods and iterative methods.

• Direct methods (A = LU ⇒ L y = b, U x = y)
• Iterative methods (x₀ → x₁ → x₂ → ···)

25

Direct methods use too much memory for 3D problems.

A U of LU = A

26

0.6 GB = O(N) 1.5 TB = O(N ¹˙⁶⁶)

For a 3D grid with N = 100³ grid points

10.5 GB = O(N ¹˙³³) < O(N ¹˙⁶⁶)
Computation of P, Q: O(N²)

Direct methods use too much memory for 3D problems.

A

27

0.6 GB = O(N)

For a 3D grid with N = 100³ grid points

U of LU = PAQ

Iterative methods: memory-efficient ⇒ suitable for 3D
• Only matrix stored is sparse A.

• xm is constructed by adding a linear combination of
r₀ , A r₀ , ... , Aᵐ⁻¹ r₀

to x₀.

• Do not even need A; only need “action of A on vectors”.
⇒ Matrix-free formulation.

• Improve solutions until residual vector
rm = b − A xm

becomes sufficiently small (e.g., ‖rm‖ < 10⁻⁶ ‖b‖).

• Many iterative methods: BiCG, QMR, GMRES, ...

28

50nm

1550nml0 =

silica
silver

50nm

29

Test problem: 90° bend in metallic slot waveguide

Nx × Ny × Nz ≈ 200 × 100 × 200
N = 3NxNyNz ≈ 12 million

Movie: �(�� �) = �� ��(�) �� ω ��

30

Evolution of residual error

Direct application of BiCG does not work

31

Evolution of residual error

“Preconditioning” accelerates convergence

• P = A: ultimate preconditioner (never used)

• P = diag(A): Jacobi preconditioner

A x = b ñ IP-1 AM x = P-1 b
P is called a “preconditioner”.

32

Jacobi preconditioner makes convergence faster

No precond.

33

Jacobi precond.

6 hrs, 1024 cores
●

Evolution of residual error

Perfectly matched layer (absorbing boundary cond.)
With PML

34

Perfectly matched layer (absorbing boundary cond.)
Without PML

35

—âm-1 —âE - w2 ∂E = - iw J

Two kinds of PML:
uniaxial PML (UPML), stretched-coordinate PML (SC-PML)

Original:

î Au x = b

î Asc x = b

ms = m

sy sz
sx

0 0

0
sz sx
sy 0

0 0
sx sy
sz

, ∂s = ∂

sy sz
sx

0 0

0
sz sx
sy 0

0 0
sx sy
sz

—s = x̀
∂

sx ∂x
+ ỳ

∂

sy ∂y
+ z̀

∂

sz ∂z

UPML:

SC-PML:

36

—âms
-1 —âE - w2 ∂s E = - iw J

—s âm-1 —s âE - w2 ∂E = - iw J

—âm-1 —âE - w2 ∂E = - iw JOriginal:

ms = m

sy sz
sx

0 0

0
sz sx
sy 0

0 0
sx sy
sz

, ∂s = ∂

sy sz
sx

0 0

0
sz sx
sy 0

0 0
sx sy
sz

—s = x̀
∂

sx ∂x
+ ỳ

∂

sy ∂y
+ z̀

∂

sz ∂z

UPML:

SC-PML:

37

—âms
-1 —âE - w2 ∂s E = - iw J

—s âm-1 —s âE - w2 ∂E = - iw J

Two kinds of PML:
uniaxial PML (UPML), stretched-coordinate PML (SC-PML)

Original eq.
Different materials

⇓
Easy to implement

without extra coding

NOT original eq.

⇓
Need extra coding

Jacobi preconditioner makes convergence faster

No precond.

38

Jacobi precond.

6 hrs, 1024 cores
●

Evolution of residual error

This was with UPML!

SC-PML

Solution: use SC-PML

39

UPML

UPML/Jacobi

20 mins, 128 cores
(×150 speedup)●

Evolution of residual error

Convergence rate depends on κ(A)

k HAL = smaxHAL
sminHAL ≥ 1

maximum singular
value

minimum singular
value

condition number

※ Smaller κ(A) induces faster convergence.
⇒ κ(Asc) ≪ κ(Au) ?

40

σmax(A) σmin(A) κ(A)

UPML (A = Au) 517 2.20×10⁻⁶ 2.47×10⁸

SC-PML (A = Asc) 2 4.74×10⁻⁶ 4.22×10⁵

ratio
> 500

41

2D Example

vacuum

silver

PM
L

PM
L

PML

PML

12Δ

100Δ
Δ = 2nm

Yes, κ(Asc) ≪ κ(Au) !

Comparison with FEM

FEM can model curved objects better

FD grid FE mesh

(image from Wikipedia)

… at the penalty of making A less structured

A on FD grid A on FE mesh

※ Banded A is much more efficient to store/apply/factorize.
⇒ FDM is better for large 3D problems?

(image from Wikipedia)

Still, FEM has much fewer # of unknowns

FD grid FE mesh

Even though A on FE mesh is unstructured, it is much smaller so
more efficient to store/apply/factorize in general.

(image from comsol.com)

… but what if scatterers are everywhere?

Not much reduction in # of unknowns by using FE mesh!

https://arxiv.org/abs/1710.02215

FDM can also model curved objects!

• (Energy inside voxel of two materials)
= (energy inside voxel of single anisotropic material whose ε is
εt in t-direction and εn in n-direction)

Et

Enε₁

ε₂
(������ ������ �����)

=
�
�
(�� ·��) �� +

�
�
(�� ·��) ��

=
�
�

ε� ��� +
���

ε�
�� +

�
�

ε� ��� +
���

ε�
��

=
�
�
�
�� ε� + �� ε�

�
� ��� � +

�
�
�
�� / ε� + �� / ε�

�
� ��� �

≡
�
�
ε� ��� � +

�
�
���

ε�
��

“Subpixel smoothing”
(Prof. Johnson will discuss this more, if he hasn’t):

Assign a single anisotropic ε in a voxel that accurately “averages” ε

FDM is much easier to implement than FEM

• Users can easily modify code to add new features
(e.g., anisotropy, nonlinearity, new PML)

