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first, some perspective...



Development of Classical EM Computations

@ Analytical solutions

vacuum, single/double interfaces
various electrostatic problems, ...

scattering from small particles,
periodic multilayers (Bragg mirrors), ...

... & other problems with
very high symmetry
and/or separability

Lord Rayleigh and/or small parameters




Development of Classical EM Computations
@ Analytical solutions

@ Semi-analytical solutions: series expansions

e.g. Mie scattering of light by a sphere

Also called spectral methods:
Expand solution in rapidly converging Fourier-like basis

* spectral integral-equation methods:

exactly solve homogeneous regions (Green’ s func.),
& match boundary conditions via spectral basis

Gustav Mie . ) ) .
(1908) (e.g. Fourier series, spherical harmonics)

e spectral PDE methods:
spectral basis for unknowns in inhomogeous space
(e.g. Fourier series, Chebyshev polynomials, ...)
& plug into PDE and solve for coetficients



Development of Classical EM Computations
@ Analytical solutions

@ Semi-analytical solutions & spectral methods

Expand solution in rapidly converging Fourier-like basis
e.g. Mie scattering of light by a sphere
Strength: can converge exponentially fast
— fast enough for hand calculation
— analytical insights, asymptotics, ...

Gustav Mie Limitation: fast (“spectral”) convergence requires
(1908) basis to be redesigned for each geometry
(to account for any discontinuities/singularities
... complicated for complex geometries!)

(Or: brute-force Fourier series, polynomial convergence)



Development of Classical EM Computations
@ Analytical solutions

@ Semi-analytical solutions & spectral methods

@ Brute force: generic grid/mesh (or generic spectral)

integral equations:
— boundary elements mesh
surface unknowns coupled

by Green’ s functions

PDEs: discretize space into grid/mesh
— simple (low-degree polynomial)
approximations in each pixel/element
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lose orders of magnitude in performance ... but re-usable code
€ computer time << €€€€ programmer time




Computational EM:
Three Axes of Comparison

— eigenproblems: harmonic modes ~ e’ (J =0)

e What problem is solved? — frequency-domain response: E, H from J(x)e«!
— time-domain response: E, H from J(x, 1)

— PDE or integral equation?

— finite differences (FD)
* What discretization?  — finite elements (FEM) / boundary elements (BEM)

infinitely many unknowns ~ — spectral / Fourier
= finitely many unknowns  — ...

— dense linear solvers (LAPACK)
 What solution method? — sparse-direct methods
— 1terative methods



A few lessons of history

e All approaches still in widespread use

— brute force methods in 90%+ of papers, typically the first resort to
see what happens in a new geometry

— geometry-specific spectral methods still popular, especially when
particular geometry of special interest

— analytical techniques used less to solve new geometries than to prove
theorems, treat small perturbations, etc.

e No single numerical method has “won” in general

— each has strengths and weaknesses, e.g. tradeoff between
simplicity/generalizability and performance/scalability

— very mature/standardized problems (e.g. capacitance extraction) use
increasingly sophisticated methods (e.g. BEM), research fields (e.g.
nanophotonics) tend to use simpler methods that are easier to modify
(e.g. FDTD)



Computing & Interpreting
Band Structures
& Dispersion Relations
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Understanding Photonic Devices

[ Xu & Lipson, 2005 ]
[ Notomi et al. (2005). ]

[Mangan, et al.,
OFC 2004 PDP24 ]

Model the whole thing at once? Too hard to understand & design.

Break 1t up into pieces first: periodic regions, waveguides, cavities



Building Blocks: “Eigenfunctions™

* Want to know what solutions exist in different regions
and how they can interact: look for time-harmonic modes ~ e«

VXE= —/ﬂ—H — 10oH First task:

get rid of this mess

+ constraint

“e1gen-field”

eigen-operator eigen-value
(Hermitian for lossless/real &!)




Building Blocks: Periodic Media
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media Ay A common thread:

waveguides ,
s translational

discrete periodicity: photonic crystals Symmetry

periodic in periodic in periodic in
one direction two directions three directions




Periodic Hermitian Eigenproblems

[ G. Floquet, “Sur les équations différentielles linéaries a coefficients périodiques,” Ann. Ecole Norm. Sup. 12, 47-88 (1883). ]
[ F. Bloch, “Uber die quantenmechanik der electronen in kristallgittern,” Z. Physik 52, 555-600 (1928). ]

if eigen-operator 1s periodic, then Bloch-Floquet solutions:

i(E-i—wt)

can choose: H(f,t): € Hl_é(’%)

\

planewave L .
periodic “envelope

Corollary 1: k 1s conserved, i.e. no scattering of Bloch wave

Corollary 2: H - given by finite unit cell, 000

so w are discrete w (k) XoX0)



Periodic

Bloch waves:

Medium

Band Diagram

Electronic and Photonic Crystals

atoms 1n diamond structure | dielectric spheres, diamond lattice
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electron energy

weakly-interacting bosons
strongly interacting fermions ... many design degrees of freedom



Solving the Maxwell Eigenproblem

2
Finite cell =¥ discrete eigenvalues w,, (V + ik) % 1 (V + ik) xH = wn2 H
E C
Want to solve for w,(k), consiaint: (V +iK)-H =0

& plot vs. “all” k for “all” n,
ig% where field = H (x) eilx- o)

TTTTTTT

@ Limit range of K: irreducible Brillouin zone
@ Limit degrees of freedom: expand H 1n finite basis

@ Efficiently solve eigenproblem: iterative methods



Solving the Maxwell Eigenproblem: 1

@ Limit range of K: irreducible Brillouin zone

OO0 OO —Bloch’s theorem: solutions are periodic in K
OO00O0O

0000 .
OO00O0O 2 k

first Brillouin zone

= minimum |KI| “primitive cell”

irreducible Brillouin zone: reduced by symmetry

@ Limit degrees of freedom: expand H in finite basis

@ Efficiently solve eigenproblem: iterative methods



Solving the Maxwell Eigenproblem: 2a

(1) Limit range of k: irreducible Brillouin zone

@ Limit degrees of freedom: expand H in finite basis (V)

/

N
H)=H(x,)= Y hb,(x,) sove: AH)=’H)
m=1

2
finite matrix problem: Ah=w" Bh

inner product: ) Galerkin method:
fle)=]f e A, =b,Ab) B,=(b,b)

@ Efficiently solve eigenproblem: iterative methods



Solving the Maxwell Eigenproblem: 2b

@ Limit range of K: irreducible Brillouin zone

@ Limit degrees of freedom: expand H 1n finite basis

— must satisfy constraint: (V +ik)- H=0

Planewave (FFT) basis
G

constraint: HG : (G + k) =(

uniform “grid,” periodic boundaries,
simple code, O(N log N)

Finite-element basis
»f{“‘i@@fﬁ&.ﬁ% constraint, boundary conditions:

A NI
Sty "H‘ s 12
‘;g -’”; 252 Nédélec elements
W

e
.{‘g [ Nédélec, Numerische Math.

35,315 (1980) ]

S nonuniform mesh,
. . " more arbitrary boundaries,
[ figure: Peyrilloux et al.,
J. Lightwave Tech. complex code & mesh, O(N)

21,536 (2003) ]

@ Efficiently solve eigenproblem: iterative methods



Solving the Maxwell Eigenproblem: 3a

(1) Limit range of k: irreducible Brillouin zone

@ Limit degrees of freedom: expand H in finite basis

@ Efficiently solve eigenproblem: iterative methods

Ah = w’Bh

Slow way: compute A & B, ask LAPACK for eigenvalues
— requires O(N?) storage, O(N?) time

Faster way:
— start with initial guess eigenvector A,
— iteratively improve
— O(Np) storage, ~ O(Np?) time for p eigenvectors

(p smallest eigenvalues)



Solving the Maxwell Eigenproblem: 3b

(1) Limit range of k: irreducible Brillouin zone

@ Limit degrees of freedom: expand H in finite basis

@ Efficiently solve eigenproblem: iterative methods

Ah = w’Bh

Many iterative methods:
— Arnoldi, Lanczos, Davidson, Jacobi-Davidson, ...,
Rayleigh-quotient minimization



Solving the Maxwell Eigenproblem: 3¢

@ Limit range of K: irreducible Brillouin zone

@ Limit degrees of freedom: expand H 1n finite basis
@ Efficiently solve eigenproblem: iterative methods

Ah = w’Bh

Many iterative methods:
— Arnoldi, Lanczos, Davidson, Jacobi-Davidson, ...,
Rayleigh-quotient minimization

for Hermitian matrices, smallest eigenvalue w, minimizes:

k
variational W2 — min h Ah minimize by preconditioned
/ min—max 0 — " ' '
conjugate-gradient
theorem h h Bh JUg & (or....)



Band Diagram of 2d Model System

Photonic Band Gap

TM bands
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The Iteration Scheme 1s Important
(minimizing function of 10*-10%+ variables!)

h AR
) =min—s = f(h)

Steepest-descent: minimize (4 + o Vf) over a ... repeat

Conjugate-gradient: minimize (h + a d)
— d 1s Vf + (stuff): conjugate to previous search dirs

Preconditioned steepest descent: minimize (A + o d)
— d = (approximate A"') Vf ~ Newton s method

Preconditioned conjugate-gradient: minimize (h + a d)
— d is (approximate A" [Vf + (stuff)]




The Iteration Scheme 1s Important
(minimizing function of ~40,000 variables)
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The Boundary Conditions are Tricky

\ K, 1s continuous

_— K, 1s discontinuous

(D, = €K, 1s continuous)

Use a tensor €.

—1 -1
[ Meade etal. (1993)] | <3 > ) E,




The e-averaging 1s Important

100-
: correct averaging
| backwards averaging changes order
105 of convergence
s from AX to Ax?
S ]
514 averaging ,
S reason in a nutshell:
averaging
0 1_- tensor averaging = smoothing €
B = changing structure
... must pick smoothing
with zero 1%-order
0.01

10 00 perturbation
resolution (pixels/period)

[ Farjadpour et al. (2006) ]



Closely related to anisotropic
metamaterial, e.g. multilayer film in
large-A limit

(D)) _(eE) _ (D)

eff _

(E) (E) (D))

key to anisotropy 1s differing
continuity conditions on E:

I E” COntinuous = 8” = <E>

—
— D, =¢E, continuous = ¢, = <g" !>




Intentional “defects” are good

. o o . (11 . 7
microcavities waveguides (- wires )

a4 &

/’




Intentional “defects’ in 2d

(Same computation, with supercell = many primitive cells)

waveguides
microcavities 0 0:0'0 O

O 0:0:0 ©
O 0:0:0 O

O

O O
© O O

© O ©O
© O O

(boundary conditions ~ irrelevant
for exponentially localized modes)




Air-waveguide Band Diagram
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to be continued. ..

Further reading:

Photonic Crystals book: http://jdj.mit.edu/book

Bloch-mode eigensolver: http://jdj.mit.edu/mpb



http://jdj.mit.edu/book
http://jdj.mit.e/~stevenj/notes

Computational Nanophotonics:
Cavities and Resonant Devices

Steven G. Johnson
MIT Applied Mathematics



Resonance

an oscillating mode trapped for a long time 1n some volume
(of light, sound, ...) lifetime T >> 20w,

: modal
frequency w, quality factor Q = w,T/2
: - o t/O volume V
energy In cavity ~ e %
[ Notomi et al. (2005). ]
®/2n=57.8 MHz 50 ikt /
[ C.-W. Wong,

(Qoyw0) o (Qmywim) : O : APL 84,1242 (2004). ]
- |ommo|\/v\/\/ R e i
out s

[ Schliesser et al.,
PRL 97, 243905 (2006) ]

T r——

[ Eichenfield et al. Nature Photonics 1,416 (2007) ]



Resonance = Pole 1n Green’s Function

an oscillating mode trapped for a long time in some volume
(of light, sound, ...)  lifetime T >> 27w,

frequency w, quality factor Q = wyt/2
energy in cavity ~ e~®v0

modal
volume V
~ volume where
residue 1s large

Im w
A
near w,, Green’s function 1s dominated by
contribution of the pole ~ a “resonant mode” profile
<€ < > Re o
simple pole
at (o — /T response to a narrowband pulse
?_ i ~ exponential decay 1n time
causatity/passiity: (in vicinity of the cavity)

v poles only for Im w < 0]



Green’s functions, brietly

Green’s function = field(s) at x from dipole at 'y
at a frequency m

(VXu~1Vx — w2e)EV) (%) = iwd (x — y)x (unit vector in j)
= electric “dyadic” Green’s function G, (x,y) = [E(VD E®@) E®)]

... any electric current J(x)e %t then gives the

“convolution” E(x) = G, *J = [ G, X, y)J(y)d’y

At eigenvalue/resonance frequency w, (VXu 1VXE, = wjcE,), the
operator (VXu~1VX —wje) becomes singular.
G,, blows up = “pole” at w§

Similarly, 6x6 Green’s function [, (X,y) gives [I]-al] =Y

fields from 6-component currents § = [I](] atviay =1, * E.



o o O O 0 O O
o O O 0 O O

Microcavity Blues

o 0 O 0 O O
o O O 0 O O

For cavities (point defects)
frequency-domain has its drawbacks:

e Best methods compute lowest-w eigenvals,
but N¢ supercells have N4 modes

below the cavity mode — expensive

* Best methods are for Hermitian operators,
but losses requires non-Hermitian



Time-Domain Eigensolvers

000000 Simulate Maxwell’ s equations on a discrete grid
00000 1 S

CY ) ’Q o + absorbing boundaries (leakage loss)
@
o0

o
o0
00000 e Excite with broad-spectrum dipole (/) source

000000 /%\

tricky l
signal processing Response 1s many
complex w, sharp peaks,
[ Mandelshtam,
l J. Chem. Phys. 107,6756 (197) | /\ /\ one peak per mode

decay rate in time gives loss



FDTD: finite difference time domain

Finite-difference-time-domain (FDTD) is a method to model Maxwell’s
equations on a discrete time & space grid using finite centered differences

VXE:—a—B VxH:a—D+J
ot ot

o.o.o.o.o. —— <= =

Q00000 HX Z
00000 " A K.S. Yee 1966
Q0000

A. Taflove & S.C. Hagness
2005




FDTD: Yee leapfrog algorithm

2d example:

1) at time t: Update D fields everywhere

using spatial derivatives of H, then find E=¢-1D

At j+0.5
EX =% Ay ( HZ

Ey _= SAZX (Hzi+0.5 _ HZi-O.S)

2) at time t+0.5: Update H fields everywhere using
spatial derivatives of E

HZ e A: ( i+l EXj + Eyi . i+1)

Ay AX

CFL/Von Neumann stability: cAt < 1/ VAX—2+Ay—2




Free software: MEEP
http://ab-initio.mit.edu/meep

e FDTD Maxwell solver: 1d/2d/3d/cylindrical

e Parallel, scriptable, integrated optimization, signal processing

e Arbitrary geometries, anisotropy, dispersion, nonlinearity

» Bloch-periodic boundaries, symmetry boundary conditions,
+ PML absorbing boundary layers...

> -3

Meep
'



Absorbing boundaries?

Finite-difference/finite-element volume discretizations
need to artificially truncate space for a computer simulation.

In a wave equation,
a hard-wall truncation
gives reflection artifacts.

An old goal: “absorbing
boundary condition” (ABC)
that absorbs outgoing
waves.

Problem: good ABCs are
hard to find 1n > 1d.




Perfectly Matched Layers (PMLs)

Bérenger, 1994: design an artificial absorbing layer
that 1s analytically reflectionless

Works remarkably well.

Now ubiquitous in FD/FEM
wave-equation solvers.

Several derivations, cleanest
& most general via “complex

coordinate stretching”
[ Chew & Weedon (1994) ]




Perfectly Matched Layers (PMLs)

Bérenger, 1994: design an artificial absorbing layer
that 1s analytically reflectionless

Even works in inhomogeneous
media (e.g. waveguides).




PML Starting point: propagating wave

e Say we want to absorb wave traveling in +x direction
in an x-invariant medium at a frequency w > 0.

fields ~ £(y,z)e"“ "

original oscillating solution [ rare “backward-wave”
' ' cases defeat PML
(Loh, 2009) ]

(usually, k> 0)

0.5¢

(only x in wave
equation 1s via
ol d 0/ 0ox

terms.)




PML step 1: Analytically continue

Electromagnetic fields & equations are analytic in x,
so we can evaluate at complex x & still solve same equations

deformed x contour
1

L o

i X=X+—X
05} ! ()
=
E 0 absorbing region
unchanged S
(no reflection)
-05}
-1 -
0 2 4 6 8 10

exp(ikx)

solution on deformed contour
1

1 ( | ] ) A :

unchanged absorbing region
05| (no reflection)
0 }
-0.5
_1 1 1
0 2 4 6 8 10

i(kx—a)t)—kdx

fields ~ £(y,2)e™™ ) = f(y,7)e o



PML step 2: Coordinate transtormation

Weird to solve equations for complex coordinates X,
so do coordinate transformation back to real x.

ch(x ) i T
B(x)=x+ j ya@| 1 |2
(allow x-dependent dx 0x 1+ 10(X) |ox
PML strength o) i w

X

i(kx—a)t)—gj. o(x")dx’

fields ~ f(y,z2)e'™ ™ — f(y,2)e /

nondispersive materials: k/w ~ constant

so decay rate independent of w
(at a given incidence angle)



PML Step 3: Effective materials

In Maxwell’ s equations,V x E =iouH, VxH=—-iwcE+],
coordinate transformations are equivalent to transtormed materials
(Ward & Pendry, 1996: “transformational optics”)

T
JieurJ
{e,uy —
detJ
x PML Jacobian for 1sotropic starting materials: effective
. conductivity
(1+i0/ o) (1+io /)™ \
/= 1 {e,u} — {e,u} 1 +io / &
1 - l+io/w

(%j PML = effective anisotropic “absorbing” &, u



Photonic-crystal PML?

FDTD (Meep) simulation:
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Analytic continuation of Maxwell’s equations i1s hopeless
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Photonic-crystal PMLs
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reflection coefficient

Failure of Photonic-crystal “pseudo-PML”

[ Oskooi et al, Optics Express 16, 11376 (2008) ]
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Redemption of the pseudo-PML.:
slow (“adiabatic” ) absorption turn-on

[ Oskooi et al, Optics Express 16, 11376 (2008) ]

T p— T Y LR 0SY
T pPML
non PML %. (periodic) Any absorber,

(&)

(Periodic) turned on gradually
enough, will have
non PML reflections — 0!

(uniform)

—
ol

—
o

PML (when 1t works)
. just helps coefficient.

reflection coefficient
o

-
(&)
T

—

o,
-
<
[

-20

10 10 10
absorber length L /(A or a)

10



What about DtN / RCWA / Bloch-
mode-expansion / SIE methods?

— useful, nice methods that can impose outgoing boundary conditions
exactly, once the Green’s function / Bloch modes computed

challenge problem for any method:
periodic 3d dielectric waveguide bend in air
(note: both guided and radiating modes!)

.. DtN / Green’s function / Bloch modes (incl. radiation!) expensive



Computational Nanophotonics:
Sources & Integral Equations

Steven G. Johnson
MIT Applied Mathematics



How can we excite a desired
incident wave?

PML

Want some current source
to excite incident waveguide
mode, planewave, etc...

— also called transparent

? 7 T : (7 source since waves

- v do not scatter from it
(thanks to linearity)

PML

— vs. hard source =
Dirichlet field condition

A%
<
—




Equivalent currents
(“total-field/scattered-tield” approach)

[ review article: arXiv:1301.5366 ]

/ \
e/ \
l?#?ltltlttt%#:
J
\\ /
\ n /

\- ’
/
”~

\ﬁ_’

known incident fields

H

in ambient medium
(possibly inhomogeneous,

e.g. waveguide or photonic crystal)

equivalent

currents PML
C ,’f Q \\ /'l' Q N
/ N / N b
/ \\ / \\ ;
jnn:nnﬂ éﬂnn*nnt
¥ ¥
\ \
X | /// & X ) ///
fzo\\\ /*/ \ '\ f +f/*/ f-
'fﬁ__d 'f‘_’
PML

want to construct

surface currents

X

J

giving same f* in €2

do simulations

1n finite domain

+ inhomogeneities
/ interactions

= scattered field £~



The Principle of Equivalence
in classical EM

(or Stratton—Chu equivalence principle)
(formalizes Huygens’ Principle)

(or total-field/scattered-field, TFSF)
(near-to-far-field transformation)

(close connection to Schur complement [Kuchment])

| see e.g. Harrington, Time-Harmonic Electromagnetic Fields |

[ review article: arXiv:1301.5366 ]



starting point: solution in all space

incident medium X

fields f* \
/,// Q

7

-

’/

d

\
\
\
\
\
\

6-component o E
fields: | H

solve (source-free) Maxwell PDE (in frequency domain):

( -V X - )F:_Wﬁ



constructing solution in €2

equivalent
“6”-component
___ surface currents
\
Q .

s
[
-
\

construct ¢ so that f is a new solution:

VX) f = —iwyf + 5(00) (—an+) “electric” current

nxXE™T “magnetic” current

(—Vx
= —iwyf+c



Exciting a waveguide mode in FDTD

— compute mode in MPB, then use as source in MEEP

—
~N

single mode

non eigenmode source
(constant J)

‘?IIIII

-y
(=)

o
@

frequency wa/2nc
(=) o
<. =

— S8

0.2 04 0.6 1.0
axial wavevector (2 n/a)

=
N

o

engenmode source

1.2

multi mode

non-eigenmode source

| leng’éh’ﬁw’é&é’W

"R E-
}M;., +- mmn
502 04 10132

axial wav u utnr (Q’n/a)

[ review article: arXiv:1301.5366 ]



Problems with equivalent sources

(if not solved, undesired excitation of other waves)
[ review article: arXiv:1301.5366 |

e Discretization mismatch: at finite resolution, solutions from
one technique (MPB) don’t exactly match discrete modes
in another technique (Meep) — leads to small imperfections
— solvable by using the same discretization to find modes

* Dispersion: mode profile varies with w, so injecting a pulse p(?)
requires a convolution with ¢(x,w)  ¢(x,)

Fourier

currents(x,t) = p(7) * ¢(x,1) = p(t) ¢(x,)
narrow-bandwidth
— convolutions expensive, can be approximated by
finite-time (FIR/IIR) calculations using DSP techniques

— specialized methods are known for planewave sources
(have numerical dispersion!)

time domain only



Shortcut: Subtract two simulations

example: 90° bend of single-mode dielectric waveguide

1

simple
constant-amplitude
line-current J

accumulate (discrete-time)
Fourier transforms of fields:

£12 e (% 0) = > £(x,nA) ™™

bend,straight

at desired frequencies

same J

want incident, transmitted,
and reflected energy-flux spectra:

incident: Poynting flux of fsztraight

transmitted: flux of fﬁend

reflected: flux of itend—fltraight



Shortcut: Subtract two simulations

example: 90° bend of single-mode dielectric waveguide

—=S— transmission
09 = reflection
loss
08}
07F

0 1 L 1 1 1 1 1 1 1
0.1 on 012 0.13 0.14 0.15 0.16 017 0.18 0.19 02
frequency

(waveguide width) / A



Shortcut: Planewave sources

[ review article:

for periodic media arXiv: 13015366
k, .
=
=
(b) £ k\. '
K= @
O0O000W
—»| a |- : '
o Bloch-periodic eikx“ffi T—»x
umiccelly l | ;:
s 2
trick #1: incident & scattered fields trick #2: % current source

are Bloch-periodic/quasiperiodic produces planewave



Retlection spectra example | |
for periodic media L

TTTITTo oA
< TAd)

$ooooo|
—>| a | | : L
(Fano resonance lineshapes) L
0.9 .
08
08
2
Q
% " 0.6
5 0.7
:".:': 0.4
Z
= 06
0.2
(b }~
0

o

(a)
0.1 0.2 0.3 04 10 20 30 40 50 60 70

k.a/2n 0 (degrees)

(req. for incident planewave) entire Spectrum at fixed kx (D/C Sln(e) = kx
from single FDTD simulation & curved line

(Fourier transform of pulse) 0 = asin(ck,/w)
+ normalization run in (0.0) plot

note: m all above
light line




Fun possibilities in FDTD:
mOVing SOUI'CCS [= just some currents J(x,f) ]

v=1.05 ¢/n (0.35 pixels/Atr)

Doppler shift from

moving oscillating dipole Cerenkov radiation from moving
point charge in dielectric medium



Cerenkov radiation

charge density p=gd(x—vt)
= current density

J. =qvé(x—vr)
— ﬂTeik(x—vt) dk
27

— pilkx—o)
if w(k)=kv

v=1.05 ¢/n (0.35 pixels/Ar) excites radiating mode w(k,.k,)

it v=awk.k)k,
= phase velocity in x direction
> ¢/n 1n index-n medium



Cerenkov radiation 1n photonic crystal

excites radiating mode w(k, ,k,)

toeeeee it v=awk. k) (k + 2mumla)
OO0OO0OO0OO0O0O0 Y
0000000 for any integer m
qo O O O O O O

OO0OO0OO0OO0O0O0 = NOo minimum v
OO000O0O0O0 [ Smith—Purcell effect ]
ONONONONONONG)

very different radiation
patterns & directions
depending on v,

due to interactions with
2d PhC dispersion curves

[ Luo, Ibanescu, Johnson,
& Joannopoulos (Science, 2002) |




Surface-integral equations (SIEs)
and
boundary-element methods (BEMs)

| see e.g. Harrington, Time-Harmonic Electromagnetic Fields |

Harrington, “Boundary integral formulations for homogeneous
material bodies,” J. Electromagnetic Waves Appl. 3, 1-15 (1989)

Chew et al., Fast and Efficient Algorithms
in Computational Electromagnetics (2001) ].



Exploiting partial knowledge
of Green’s functions

a typical scattering problem:

incident medlum O

fields \
scatteredf

fields

medium 1

interior
fields

suppose that we know Green’s functions
in infinite medium O or medium 1

— known analytically for homogeneous media

— computable by much smaller calculation in periodic medium

Can exploit this to derive integral equation for surface unknowns only.



The Principle of Equivalence
in classical EM

| see e.g. Harrington, Time-Harmonic Electromagnetic Fields |

incident medium O

fields f0+\
scatteredf

fields -
6-component ., | E | o¢  eo
fields: i _[ H ]_f +1

Maxwell PDE:

medium 1

interior
fields f!

... we want to partition

VX f = —ia))((o’l)f into separate medium 0/1
-V X problems & enforce continuity...



Constructing a medium-0 solution

“equivalent”
6-component
same medium O ___._ surface currents

incident \ \\ c
fields O+

-7 medium 0

same ’
fields < =0 (1)

-
-
-
-
-

modified Maxwell PDE: ’
VX _ —nXHO\ “electric” current
(—V)( ) F= lef T 6(69) ( anO )“magnetic” current

=—iwyf+c



The Principle of Equivalence 1

“equivalent”
6-component

incident medium O ___._ surface currents

fields f0+\ \\\ c

-7 medium 0

Same / (’ \\\\\
scattered \ =0 ('Y K

fields Y- of ¢ \

I‘i LR e L
convolution with
t 6x6 Green’s function I

of homogenous medium O

O =

[ e.g. Harrington, Time-Harmonic Electromagnetic Fields |



The Principle of Equivalence 11

opposite-sign
6-component

-~
-

medium 1 ___._ surface currents
’ g \\‘ _C
t= " medium 1 ™
Lol 1
v T =—1" *c¢ y

-

\ - -
\ ;s
\ //
N /
4
4

convolution with
6x6 Green’s function I'!
of homogenous medium 1

[ e.g. Harrington, Time-Harmonic Electromagnetic Fields |




Surface-Integral Equations (SIE)

unknown
medium 0 €
£O — FO L T s N \

" medium 1 -

C det@rmlned by \\\\ P -7
continuity of tangential fields ‘ ‘
at 0/1 interface:

— _f0+

tangential tangential

(r0+rl)>x<c

[ e.g. Harrington, Time-Harmonic Electromagnetic Fields |



Discretizing the Maxwell SIE

_ g0+ unknown

tangential

(T°+T")xc

tangential -~ €

pick some basis b, (n=1,... N—x)
for surface-tangential vector fields

-
-
-
-
-

unknowns x,,

Nd t \\\ ° ’,’
c= E xb T = Nequations
n ' !

[ e.g. Harrington, Time-Harmonic Electromagnetic Fields |



Discretizing the Maxwell SIE

Galerkin method — require error L basis:

<bm (T°+1") (2 xnbnj> = (b, |-£") /__ffkiown

N
N
A Y
N

s
e

pick some basis b, (n=1,... N—x)
for surface-tangential vector fields

-
-
-
-
-

N discret N
c= 2 xb T = Nequations Mx =s
n !

unknowns x,,

[ e.g. Harrington, Time-Harmonic Electromagnetic Fields |



Discretized SIE: Two Objects

- szbz 131
xnbn
medium O
= linear equatlons Mx =s

1
M=G°+[ G

.. + straightforward generalizations to more objects,
nested objects, etcetera



SIE basis choices

e Can use any basis for ¢ = any basis of surface functions
... basis 1s not incoming/outgoing waves
& need not satisty any wave equation

» Spectral bases: spherical harmonics, Fourier series, ...
... nice for high symmetry
~ uniform spatial resolution

* Boundary Element Methods (BEM):
localized basis functions defined on irregular mesh

N

i
0y

“RWG” basis (1982):

X
i

)
/

¥
5‘

LY
Vﬁv

vector-valued b, defined
on pairs of adjacent triangles
via degree-1 polynomials

ex
i

DK
W,
1\§$A

‘V,

\/
B

N/

/




BEM strengths

especially small surface areas in a large (many-A) volume, e.g.:

complex impedance
of passive structures

surface plasmons (metals):
extremely sub-A fields

. IR ]It‘ Graphene
silver =\ '
| < : ~ delta-function
nanotip kxy -, surface conductivity

D[ = jump discontinuity
[ Llatser et al. (2012) ] (N E) in H field

[ Johannes Feist, Harvard |



The bad news of BEM

* Not well-suited for nonlinear, time-varying, or
non-piecewise-constant media

* BEM system matrix M = <bm ‘(FO +T ) * bn> =G,+G,,

— singular integrals for overlapping b,,, b,
...special numerical integration techniques
— M 1s not sparse, but:
often small enough for dense solvers (S 10* X 10%)
+ “fast solvers:” approximate sparse factorizations
(fast multipole method, etc.)
— lots of work every time you change I'
(e.g. 3d vs. 2d, periodic boundaries, anisotropic, ...)
... but independent of geometry



The good news of BEM:
You don’t have to write 1t yourselt

Free software developed by Dr. Homer Reid
(collaboration with Prof. Jacob White @ MIT)

SCUFF-EM

| https://github.com/HomerReid/scuff-em |



https://github.com/HomerReid/scuff-em

Surface-

CUrrent /
Field
Formulation
- of
Electro-
Magnetism

SCUFF-EM is a free, open-source software
implementation of the boundary-element method
of electromagnetic scattering.

SCUFF-EM supports a wide range of geometries,
including compact scatterers, infinitely extended
scatterers, and multi-material junctions.

The SCUFF-EM suite includes 8 standalone
application codes for specialized problems in EM
scattering, fluctuation physics, and RF engineering.

The SCUFF-EM suite also includes a core library
with C++ and PYTHON APIs for designing
homemade applications.

https://github.com/HomerReid/scuff-em



https://github.com/HomerReid/scuff-em

SCUFF usage outline

The steps involved in solving any BEM scattering problem:

L Mesh object surfaces into trianges.

Not done by SCUFF-EM; high-quality free meshing packages exist (e.g. GMSH).

2. Assemble the BEM matrix M and RHS vector v.

SCUFF-EM does this.

5 Solve the inear sytem Mk = v for the surface currnts k.

SCUFF-EM uses LAPACK for this.

4. Post-process to compute scattered fields {E, H} from k.

SCUFF-EM does this.

Innovations unique to SCUFF-EM:

® Bypass step 4: Compute scattered/absorbed power, force, and torque directly from k
® Bypass steps 3 and 4: Compute Casimir forces and heat transfer directly from M



Geometries in SCUFF

A gold sphere and a displaced and rotated SiO2 tetrahedron:

The geometry: The .scuffgeo file:

P4

== Handle displacements and rotations without re-meshing.



Geometries in SCUFF

Regions

Surfaces

.scuffgeo File

Exterior

. o
EquatorialPlane
.LoworSurt ace

(discretization of SIE at junctions of 3+ materials is a bit tricky)




Periodic geometries in SCUFF

Unit cell mesh

First 25 lattice cells

.scuffgeo file

(implementing periodicity is nontrivial: changes Green’s function!
SCUFF: periodic I' = 2(nearest neighbors) + Ewald summation)




Using SIE/BEM solutions

Solving the SIE gives the surface currents ¢, and
from these (via I *¢) one can obtain any desired fields, but...

It 1s much more efficient to compute as much as possible
directly from ¢ (~n X surface fields). Examples:

e Scattering matrices (e.g. spherical-harmonic waves in — out):
obtain directly from multipole moments of “currents”
* Any bilinear function of the surface fields can be computed
directly from bilinear functions of ¢:
— scattered/absorbed power, force, torque, ...

https://arxiv.org/abs/1307.2966

e Net effects of quantum/thermal fluctuations in matter can
be computed from norm/det/trace of M or M
— thermal radiation, Casimir (van der Waals) forces, ...


https://arxiv.org/abs/1307.2966

Resonant modes
(and ei1genvalues)

* BEM scattering problems are of the form M(w)x =s.
Resonances (and eigenvalues) are w where this system
is singular, i.e. the nonlinear eigenproblem

det M(m) = 0

For passive (=causal) systems, solutions can only occur
for Im w < 0.

* Various algorithms exist, including an intriguing algorithm
using contour integrals of M(w) [ Beyn (2012) ].



to be continued. ..

Further reading:

Free FDTD software: http://jdj.mit.edu/meep
Free BEM software:
http://homerreid.ath.cx/scuff-EM/

Review on wave sources:
arX1v:1301.5366 [ in Taflove, Oskooi, & Johnson, eds.,
Advances in FDTD Comput. EM (2013) |


http://jdj.mit.edu/meep
http://homerreid.ath.cx/scuff-EM/

Computational Nanophotonics:
Optimization and “Inverse Design™

Steven G. Johnson
MIT Applied Mathematics



Many, many papers that parameterize
by a few degrees of freedom and optimize...

Today, focus 1s on large-scale optimization,
also called inverse design:
so many degrees of freedom (10>—10°)
that computer 1s “discovering” new designs.



Outline

* Brief overview/examples of
large-scale optimization work 1n photonics

e Overview of optimization terminology,
problem types, and techniques.

* Some more detailed photonics examples.



Outline

* Brief overview/examples of
large-scale optimization work 1n photonics

e Overview of optimization terminology,
problem types, and techniques.

* Some more detailed photonics examples.



Optical design = optimization

traditional approach: intuition + “tweaking” few parameters

Lattice constant, a Shift

@)

[Noda et. al. 2003]
[Brongersma et. al. 2010]
[Yu et. al. 2010]

[Zhou et. al. 2010]

gradient-based (“adjoint”)
optimization (>10° params, 3D)

o p— —

=0

-

[Sigmund et. al. Las. [X. Liang & SG Johnson
[Villegas et. al. 2004] [Hakansson et. al. 2005] Phot. Rev. 5, 308 (2011)] Opt. Exp. 21, 30812 (2013)]




Large-scale optimization 1n photonics:

“Every pixel” 1s a degree of freedom

solar-cell backreflector optimization
bend optimization Suniigh -

T EEEXEEEREEXEEXEXNXXX]) om
N R NN R NN NENN NN
L EE NN ENNNNENRENN]Y Antirefle
N NN RN NN NENNNN. So fal
5 TN orbing Mate®!
N N NN NN NN NNENNN. Sy S \eakly AOSODTE . 6
L B N 133nm Oy singlePass P
SO SOOI ESS SOSOS . s
0 icn=1
SO0 SSPS SOOSS Dielectric
SO OOSESO SOOSOS ot Back Reflecto"
SO SOSS SOOOSS ¢

ction Coating
=1.85

N NN NN BN NNNN N
N N NN B NN NN NN Ganapati et al. IEEE Jour. of Photovolt. 4, 175 (2014)

2d band gaps

Sigmund et al.,
Opt. Express 12, 1996 (2004)

Dobson (1999)



Topology optimization

Given two (or more) materials
A and B, determine what arrangement
— 1ncluding what topology —
optimizes some objective/constraints.

Electromagnetism:
Materials (mostly) described by
permittivity (dielectric constant) €
(susceptibility y=¢e—1)



Discretizing Topology Optimization

for computer, need finite-dimensional, differentiable parameters

some computational grid

(+ filtering methods to
constrain minimum
feature sizes and
“binary-1ze” result)

Level-set method: value of
“level-set” function ¢(x) varies

continuously at each pixel
= material Aor Bift >0 or<0

..Or ...

“Density-based topology optim.”
Continuous relaxation: material

varies in [A,B] at each pixel

e.g. 1n electromagnetism, let € at each
pixel vary in [A,B].



Outline

* Brief overview/examples of
large-scale optimization work in photonics

e Overview of optimization terminology,
problem types, and techniques.

* Some more detailed photonics examples.



A general optimization problem

min ‘f() ( x) minimize an objective function f,
n

with respect to n design parameters x
X€& (also called decision parameters, optimization variables, etc.)
— note that maximizing g(x)

: : corresponds to f, (x) = —g(x
subject to m constraints P Jo () g(x)

note that an equality constraint
][i (X) S O h(x)=0

yields two inequality constraints

£0) = h(x) and foy, (%) = —h(x)

(although, in practical algorithms, equality constraints
typically require special handling)

[ =1,2,....m

X 18 a feasible point 1f it
satisfies all the constraints
feasible region = set of all feasible x



Important considerations

photonics: mostly
local optima in
Convex vs. non-convex optimization non-convex problems

Global versus local optimization

Unconstrained or box-constrained optimization, and
other special-case constraints

Special classes of functions (linear, etc.)
Differentiable vs. non-differentiable functions
Gradient-based vs. derivative-free algorithms

Zillions of different algorithms, usually restricted to
various special cases, each with strengths/weaknesses



Relaxations of Integer Programming

If x 1s integer-valued rather than real-valued (e.g. x € {0,1}"),
the resulting integer programming or combinatorial optimization
problem becomes much harder in general (often NP-complete).

However, useful results can often be obtained by a continuous

relaxation of the problem — e.g., going from x € {0,1}" to x €

[0,1]"

... at the very least, this gives an lower bound on the optimum f,

... and penalty methods (e.g. SIMP) can be used to gradually
eliminate intermediate x values.

Leads to “density based” topology optimization, many methods to
impose feature-size constraints etc.



Derivatives are essential

. For n = 1000’s of parameters,
min fO (X ) impractical unless you have

fo; (X)

1=0,1,2,....m

subject to m constraints

£(x)<0

computed “analytically”
[ =1,2,....m

(not by finite differences).

minimize an objective function f
with respect to n design parameters x

(also called decision parameters, optimization variables, etc.)



Impossible to explore/optimize a
10°-dimensional parameter space
without derivatives.

(Gradient tells you which direction
to go for improvement.)

(Only local optimization with this many
parameters, but can still find very good designs,
sometimes with provable guarantees.)



Amazing fact of adjoint methods:
all 10° derivatives with two simulations

physical intuition: Born approximation + reciprocity

ncident scattered field scattered field
wave + perturbation AE

\ / / _ field of
J — AS EO

“forward” solve perturbed pixel Ae,

expensive: repeat for each pixel?



Amazing fact of adjoint methods:
all 10° derivatives with two simulations

physical intuition: Born approximation + reciprocity

scattered field
+ perturbation AE source at scattered
— field of measurement point
(reciprocity)
perturbed pixel Aeg,

solve one adjoint problem

{ h pixel?
repeat for each pixe ... get fields at all perturbed pixels



Adjoint methods, in math

cost of VI ~ one extra £(x) evaluation
[ google “adjoint method” for reviews |

toy example: maximizing transmitted power from a source

EM
Fieldg  Source

Maxwell’s equations discretized as: M ( X) e =S¢

| real variables, e = real/imag parts |
Maxwell matrix

QQuadratic objective: f(x)= eTQe (parameters x)

[O assumed symmetric]

—— M Y -
ZeQ =-2e 0 ie—Za ie

adjoint problem: r_ _ = one extra solve with
M a Qe transposed (adjoint) M



(Don’t let the reciprocity intuition fool you.)

There 1s a general prescription that 1s
independent of the physics — even for
nonreciprocal, nonlinear,
and time-varying problems.

(google “adjoint method notes”™)

(also known as “reverse mode” differentiation or, 1in
machine learning, as “backpropagation”)



Sometimes, non-obvious
transformations are required
to make the problem differentiable.



Designing photonic band gaps

periodic structures (“photonic crystals’) have

Bloch-wave “quasiperiodic” solutions = periodic(x) X glkr—iw!

band diagram (dispersion relation)

= ~——
=

photonic band gap

|

frequency w

[ Y. A. Vlasov et al., Nature 414, 289 (2001). ] wavevector k

In the gap, crystal is “optical insulator” that can trap light.



Maximizing photonic band gap
over all periodic structures?

( mkina)nﬂ(k) — mlflan(k)

we want: ~ max 2

frequently not differentiable
an equivalent problem
(“epigraph” transtormation max(Z L= j

for “minimax” problems): e\ f,+ f;
subject to:
...with
. . >w (k
(mostly?) differentiable hzo,&) fork € K

. . <
nonlinear constraints: Lo, (k)



Optimizing 1st TM and TE gaps
for a triangular lattice with 6-fold symmetry
(between bands 1 & 2)

48.3% TM gap (¢ = 12:1) 51.4% TE gap (e = 12:1)

30 iterations of optimizer



Optimizing 1st complete
(TE+TM) 2d gap

20.7% gap (e = 12:1)




+ some local minima
vy_9_9
'L'A’A‘

e 00, 3% 383
A0a0al WA
2383

—10% gap

¢ ¢ 0
'AYAY A
) ¢ & |

YA XA X
¢ ¢ 0

—2% gap

good news: only a handful of minima (in 10°-dimensional space!)



Face-centered cubic lattice,

3d gap optimization
[ gtven symmetry group + which bands |

1.0 g
_ém
g ) . 08} Aw/w =¥ 17. 42% :
K S '
c S~
3 5 06!
[ = - ‘
=
T 0.4
g
a 02
ol
0

X U L T X W K
(e) FCCS8 (no. 225)

~ 100x100x100 = 10° degrees of freedom (€ in every “voxel”)



Gap vs Index Contrast

35

“negative” result:
seems to 1ndicate
diamond lattice 2 |
of holes

[previously
discovered
“by hand”:
Ho etal. (1990)] *|
1S best, and 5|
has gap for
An>1.9:1

30

20 +

15

24




Key questions occur before
choosing optimization algorithm:

 How to parameterize the degrees of freedom
— how much knowledge of solution to build in?

* Which objective function & constraints?
— many choices for a given design goal,

... can make an enormous difference in the
computational feasibility
& the robustness of the result.



Outline

* Brief overview/examples of
large-scale optimization work in photonics

e Overview of optimization terminology,
problem types, and techniques.

* Some more detailed photonics examples.



3d Microcavity Design Problem

radiation loss
(finite Q,.4)

Many ad hoc designs,

trading off Q. and V...

ring resonators

2 Want some 2d pattern

that will confine light in 3d

with maximal lifetime (“Q,.4")
and minimal modal volume (“V")

[ Loncar, 2002 ]

'o.o.ooo.ooo.o.o' n periodic
00000000 structures)

eXeXO O O O O O O O (Ye)

oyeoye' ) ) () ()C) () )ieXe)

500 IO 0 00 OOOOOO
L L L
OOOWOOO
O000 O0O0O0
O000000:0OO0OO0O0O0
[ Song, (2005) ]

[ Akahane, 2003 ]



Resonances = complex w ~

infinite cylinder: r//=0

Rybin et. al (2017): arXiv:1706.02099

frequency - i loss

A
Im w
< >
» Re o
x % X X
X X
X
y X X X
4

resonances = poles 1n scattering
= poles in Green’s function
= singular Maxwell operator M(w)

(VXVXx—w?€)E = iw] = 0
\ J

|
M(w) singular at resonance m




Optimize resonances’

A
Im w
>
» X Re w
f
X X /
X _ - optimize
X X structure
X X
X
X
X X X
X

Challenges:
Which eigenvalue?

Interior eigenvalue of
big non-Hermitian...

Tracking eigenvalue
(no discontin. jumps!)



Optimize resolvent instead

A . .
Im w maximize
* —
e o Re p"™M(wg) "y
target” w, — Re f((D)
® > N
< X Re ®
* L instead for some 1)
X _7 0ptlﬂ1lZ€
X X structure
X " ... many key physical
- quantities in this form!
X
XX X = total power expended
X
v by a source or

incident wave

| X. Liang & S. G. Johnson, Optics Express (2013). ]



Back to cavity optimization...

Typical figure of merit is “Purcell factor” Q/V [ review:
(~ enhancement of light-matter coupling) ,+Xiv:1301 5366 ]

= approximation for LDOS (local density of states)
= power expended by dipole source Re *M(w,)"' for = dipole

Naively, should we maximize Q/V or LDOS?

@ Trivial design problem: maximum Q/V = « O
| for lossless materials, STo—
e.g. perfect ring resonator of e radius ] V~R

Real design problem: maximize LDOS ¢~ P# )

averaged over desired bandwidth w,=£1,
| Liang & Johnson (2013) ]



LDOS: Local Density of States

| review: arXiv:1301.5366 |

Maxwell eigenproblem: Maxwell vector-Helmholtz:
%V X iv xE 2 OF = o’E E=i0(@®-0’)"'c'J

(E,E’)= |E"-¢E’
Power radiated by a current J (Poynting’s theorem)
I | * 3. 1 -1
P = —JRe[E"-Jdx = - Re(E,&"J)

special case of a dipole source: LDOS

J(x)=e,0(x—x,) LDOS,(x,,w) = %e(xO)Pg(xO, )



Why a “density of states” | considera

finite domain
[ review: arXiv:1301.5366 ] (periodic/Dirichlet)

+ small absorption

lvxlvxE 2 0F = oE . 231 -1
£ u E=i0(@-w°) ']
(E, El>= JE 'SE,
P = —%RC(E, 8_1J>

countable eigenfunctions

-1 _ (n) (n) -1
E®™ and frequencies w™ — iy eJ = ZE (B, ")

n

loss — 0: a localized measure of spectral density

LDOS,(x,w) = 25((0 — w(")) £(x) |E§”)(x)|2

DOS(@) = Y 6(w - o)



Complex target w, = Frequency average

e Passivity/causality: M(w)~! analytic for Im w > 0
f(w) = Pp*M(wg)"

average =Re [__ f(w) R dw =Re[2f (wy+il})]
Mm-S averaging via contour integration
T window
O \\
b X Rey  Getentire m average
X . . .
X x x0Ty with a single “unphysical”
X
< x X y complex-w solve!
* resonances (poles in A)

| X. Liang & S. G. Johnson, Optics Express (2013). ]
[Owen Miller et. al. Phys. Rev. Lett. 112, 123903 (2014)]



Complex w = w average: Lots of uses

3d optimization of Modeling Casimir/van der Waals force
absorbing particles T——' - -
(frequency-averaged (d) " " e
absorbed+scattered power) / r & 4
— vy v

F e S B B RN S —
& ¥ BN
integrating fluctuations over all w
[Owen Miller et. al. (2014)] = much nicer integral over Im m

[ Rodriguez et al., Nature Photonics (2011) ]

* General derivation of Wheeler—Chu limits via contour integration
[ Sohl, Gustafsson, Kristensson (2007) ]

e Extension of “Miller” bounds to finite bandwidth [ Shim (2019) |

* Proof that cloaking bandwidth scales ~ 1/diameter [ Hashemi (2010) ]



in-plane J

Maximizing LDOS for random in-plane J  4J,
= max[LDOS(w,J,)+LDOS(w,J,)]/2 ‘ ]

4 out of 10

Spontaneous symmetry breaking! “Picks” one polarization randomly



3d results: Photonic-crystal slab

[ X. Liang & S. G. Johnson, Optics Express (2013). ]

Optimize with Q,=10*

i.e. prefer Q = 10* but
after that mainly
minimize V

Next: 2d pattern in 3d slab

(including radiation loss via
PML absorbing boundaries)



3d Slab Results

[ X. Liang & S. G. Johnson (2013). ]

120 |8
100 [EH
80

60

40

20

N

20 40 60 80 100 120 140

after deleting “hairs™:
Q ~ 10,000
(without re-optimizing)

12

10

0 ~ 30,000, V ~ 0.06(\/n)?

vs. hand-optimized:
Q ~ 100,000, V ~0.7(A/n)?
Q ~ 300,000, V~ 0.2(A/n)?
and others...



Manufacturability: Feature-size constraints

[ Wang, Christiansen, Yu, Mgrk, and Sigmund, Appl. Phys. Lett. 113,241101 (2018) ]

Various techniques to impose

a minimum feature size,

connectivity, and other manufacturing constraints in TO.
(a) t/a =4.273 (b)t/a=7T7 (c) t/a =11

1 pm

—

no constraint:

feature-size
constraint:

(d)t/a =15 (e) t/a =15

various size cavities



Intra-cavity 2"¢-harmonic generation

[ Rodriguez et al, 2007 |

Qf/\

input/output channel

P at w, /P, at w,

09

0.8

0.7

0.6

0.5

10° 10” 10° 10 10" 10" 10"

power 1n (nondimensionalized)

X
nonlinearity

theory: 100% conversion
at critical input power

... tricky part 1s designing
cavity with simultaneous,
spatially overlapping
resonances at w; & w,



Hand-design SHG cavity

| Bietal. (2012) ]

e cwTRTRTRTRTRTIRTIRY

PEC

3.2%  ~80-90% efficiency (2d & 3d)
for AlGaAs, 30mW power, at telecc
wavelengths with 0.1% bandwidth

months of hand-tuning to find
2% compatible resonance modes




SHG by “LDOS” optimization

[ Lin, Liang, LoncCar, Johnson, and Rodriguez, Optica, vol. 3, pp. 233-238 (2016). ]

key 1dea:

maxé,,(f(é‘a;wl)) = -Re [</J§ -Ezdl‘>},
source J, at w ,
=2 1 1 ME, = iw\ ],
— J2 ~ X(z) E12 M2E2 = i(l)sz, wHy = 2(1)]
= E, where
— power at m, J, =6(r,-rp)é, j€E {x’),, 2}

_ = 2 4

Maximizing SHG J2 = &(r) Eq€;
= maximizing M, = I /=12

o Vx—-V x &l(l‘a)a)l,
composition of Iz

two scattering problems. ¢,(r,) = ¢,, + &,(e, - €,,), g, €[0,1],



SHG by “LDOS” optimization

[ Lin, Liang, LoncCar, Johnson, and Rodriguez, Optica, vol. 3, pp. 233-238 (2016). ]

gave factor of 10
Increase in
mode-overlap
figure of merit
VS.

best hand design

a )/Z\

h; (Dl (Dz

optimized VCSEL-like multilayer-film
(~hundreds of degrees of freedom)



Topology optimization for nonlinear frequency conversion
(figs courtesy Z. Lin)
a b

w, 3 o
TR

NE.
Qi

Wy

ey

high O
small I

@)(©) T

Il ) /7
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’
\ : |
' ' )
e L A g |
o qt w |

extension to 3d

10 10°*

B 107 107

[ Lin et al, Optica Vol. 3, 233 (2016) ]



Surface-enhanced Raman Scattering
| R. Christiansen, arXiv:1911.05002 (2019) ]

incident “pump” emitted

at at m—Aw
Raman
olecule

resonant
structures
(metal particles)

[ Image:
M. K. Oo, UMich ]

enhance Raman both by focusing incident wave and by
enhancing emission (Purcell effect) ... what structure 1s best?



Optimization for Raman Scattering
[ R. Christiansen, arXiv:1811.12936 (2019) |

maximize output power Ag nanoparticle

optimization steps:
Raman 0
molecule
A=532nm

every “pixel” in 777 Region
1s a design degree of freedom <

200nm
>

<+ 20nm




60 X better than typical resonators
| R. Christiansen, arXiv:1811.12936 (2019) ]
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“Metasurtace™ optical devices:

Large-area (often 100—1000A) nanopatterned
surfaces designed to reflect/transmit desired
waves — e.g. flat-lens focusing, beamforming,

LL\YIr/L
LLAYSIr7L

LL\\YIrszL
/LL\N\YTr/7L
2m LANYTIr/Zt,

Capasso group (Harva

“Meta:” << A pattern

= ¥ 2 - - acts like effective
(M Khorasaninejad, W. T. M. Khorasaninejad et al.,. IEEE J. Sel. Top.

Chen. R. C. Devlin. ] Oh. A Quantum Electron. 23, 4700216 (2017) surface “impedance”.
Y.Zhu F.Capasso, (Not really necessary.)

Science, June 3 2016)



A typical “metalens” problem

incident light (planewave)
> | Focal spot =
> |3 maximize
> | lelectric field EI2
> >
> |2 >®
> | 3
> |3
> |

Complication: focus multiple incident A and/or angles simultaneously?



JLLNTIr/ L
e complex aperiodic pattern LLO\YI /7L
o If p.l P RN ol o 728
* High material contrast LW\ Irrr/zL

e Rapidly varying (A), big

Very hard forward problem
Even if design 1s given, simulating 1t requires a
super computer for one brute-force simulation

Inverse problem intractable?

We are not given the design!
Ex: maximize [ at focal spot =
search 10° parameters for best focus

pm !

[Arbabi, A. et al.
Nat. Nanotechnol.
10, 937-943 (20195)]



Large-scale metasurface optimization by domain decomposition
[ Pestourie et al. (2018); Lin et al. (2019) ]

* Subdivide surface into small (S10M) cells,

LPA
Metasurface OSSR, S solve in parallel using either LPA or (better)
o 0mteell . R T .
- 5, overlapping non-periodic domains (ODA)
TN o opa ° “Stitch” together using near-to-farfield

........................................

transformation to get fields anywhere.
* Optimize cells (together) for any desired

objective.
many possible objective functions,
(including broad-band/multi-m)
Important Notes:
2 * You cannot optimize each cell individually.

f= /Go(r, r/)Joqui\'(rI)dr, ;

Joqui\' ~ E||

All the DOFs (>10°) over the entire surface
must be considered and updated together.

* No need to restrict oneself to sub-A domains;
domain >> A tend to work better.

focal—sprt intensity:

wavefront matching:

f:/|E—E0|2dr



Few parameters per cell: library approach

[ R. Pestourie, et al., Optics Express (2018). ]

optlmlzed metalens

Aperiodic Structure YA ochromatic lens at an angle

T | o (focal length = 15000 m wavelen gth 532 nm, angle = 5 degrees)
X
Z

if each cell has only
a few parameters...

width w

Y

S TiO,
Alr T few minutes

on a laptop!

Silica

just interpolate from this “library”™
just precompute diffraction N during optimization
coefficients vs. parameters (in LPA) over 1000s of parameters




A small metalens optimization problem

Monochromatic lens at an angle
(focal length = 15000 nm, wavelength = 532 nm, angle = 5 degrees)

Maximize the 0™-order
transmitted |EI” at a focal point
as a function of pillar widths in
every cell (here, 40 pillars).

“Boring” off-the shelf
nonlinear optimization
algorithm: CCSA algorithm
[Svanberg (2001)]

[ R. Pestourie, et al., Optics Express (2018). ]



Distance y (um)

Brute-force (FDFD) validation

180,000x faster
(Ot-order)
Green's solver

14

12

—
o

e

7720 wavelengths,
40 unit cells

Seconds on a laptop

r—

135 Brute force  [],,s Lineat:y=14.34 um
12.5}
100+ -
1.5t
12.014 12.0 5.0}
25{__“-‘-*
4 2 0 2 4
e y=11.15um
6|
9.0 3‘.
10 #
2s__.. X N _
el 4 2 0 2 a4
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[ R. Pestourie, et al., Optics Express (2018). ]



Optimization + experiment:
extended depth-of-focus metalens

[ collaboration with A. Majumdar, UW (2019) |

e-beam cylindrical lens

Theory Experiment ...

"
LR ]
'S
.
L
e
"
"2
"X

-

« ) ] W O W W 0 “ 100 1%

(SiN on fused silica) o= & o
(A =633nm)

44um depth of focus, focal length 133um



Topology Optimization for Metasurfaces
[ Lin et al. (2019) ]

HE B B EEEEEDN
Structural evolution of a EEEEEEEEE
large-area (100x 100 4?2) (= =% 5= 5= H*E

EEEEEEEESN
metalens during topology (mmmmmmmmm=

optimization ~ 10° DOF EEEEEEEEE

Every “pixel” 1s
a degree of freedom
... possibly in multiple layers!

domain decomposition (LPA / ODA)
+
1000s of parameters per domain

millions of parameters 1n total




Difficult metasurface designs

0 o0 3> 6 o 120 15° 18° 21° 24° 27° 30°

Normalized intensity
°

2, 2, 2% 4 —
| : 2

i WP AR A MR LT B R

Concentrator:
multiple angles, same focus

now fully achromatic lens...



Nommalized intessity

Normalized mtonsty

Achromatic (480-700nm) metalens

[ Lin et al (2019) ]

Topology-optimization thrives in a large design space ...
WAL R R0 0 S B B VI VST S BN | 5 Jayers of

' =700 nan ‘ ‘ =676 mu’ =651 xuul‘ E :::-62’-um | '[ i=602 nm | 140 nm tthkT102
0.8 { | | ; !
“ N i | . NA=071
a‘ . : ::——T—F\’A ™ : ,__..AJ A : : NN : : .
?1-3f'}_' an B _:,_, CrealTa, ?)w .\-:‘—rm -124’?& e 8 10-10 S 0 & 1010 4 o6 4§ 10 LGIlS S1Z€. 200 Z«S
n700 pn 7’700 e 7/700 a0 700 mn r700 e .
#=700 mn +#676 nm ‘ +=651 nan : 2627 A%602 ' Average fOCUSIHg
' | | | | efficiency > 50%
L pum ! Proof-of-concept 2D design:
[y § — — large size
#=578 nm { [ 4=553am 27529 ! | #=504 nm | | [ 4=480qm | ;
.,_ | | i + high NA
04 : i E 1 :' ] + brOddband
] | ] ; | 1 )
e B R L e e [ e by far, the best efficiency
00 s O D0 1am 00 mm 700 e
i=ST8 nm /553 =529 nm | #+504 o 4=480 o | Note: Full FDTD
| | | | | validation of the entire

lens.




Optimization 1s not just
throwing parameters at a computer.

To get a tractable problem,
domain-specific expertise goes into how you
formulate the objective & parameters. Many

physical similar choices that have very
different mathematical properties!

Many design problems remain to be attacked,
& several recent bounds far from attained.



