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first, some perspective…



Development of Classical EM Computations

1 Analytical solutions

Lord Rayleigh

vacuum, single/double interfaces
various electrostatic problems, …

scattering from small particles,
periodic multilayers (Bragg mirrors), …

… & other problems with
very high symmetry
and/or separability
and/or small parameters



Development of Classical EM Computations
1 Analytical solutions

2 Semi-analytical solutions: series expansions

Gustav Mie
(1908)

e.g. Mie scattering of light by a sphere
Also called spectral methods:
Expand solution in rapidly converging Fourier-like basis
• spectral integral-equation methods:

exactly solve homogeneous regions (Green’s func.),
& match boundary conditions via spectral basis
(e.g. Fourier series, spherical harmonics)

• spectral PDE methods:
spectral basis for unknowns in inhomogeous space
(e.g. Fourier series, Chebyshev polynomials, …)
& plug into PDE and solve for coefficients



Development of Classical EM Computations
1 Analytical solutions

2 Semi-analytical solutions & spectral methods

Gustav Mie
(1908)

Expand solution in rapidly converging Fourier-like basis

Strength: can converge exponentially fast
— fast enough for hand calculation
— analytical insights, asymptotics, …

Limitation: fast (“spectral”) convergence requires
basis to be redesigned for each geometry
(to account for any discontinuities/singularities
… complicated for complex geometries!)

(Or: brute-force Fourier series, polynomial convergence)

e.g. Mie scattering of light by a sphere



Development of Classical EM Computations
1 Analytical solutions

2 Semi-analytical solutions & spectral methods

3 Brute force: generic grid/mesh (or generic spectral)

←finite differences
(or Fourier series)

& finite elements→

PDEs: discretize space into grid/mesh
— simple (low-degree polynomial)

approximations in each pixel/element

lose orders of magnitude in performance … but re-usable code
€ computer time  << €€€€ programmer time

integral equations:
— boundary elements mesh

surface unknowns coupled
by Green’s functions



Computational EM: 
Three Axes of Comparison

• What problem is solved?
— eigenproblems: harmonic modes ~ e–iωt (J = 0)
— frequency-domain response: E, H from J(x)e–iωt

— time-domain response: E, H from J(x, t)
— PDE or integral equation?

• What discretization?
— finite differences (FD)
— finite elements (FEM) / boundary elements (BEM)
— spectral / Fourier
— …

• What solution method?
— dense linear solvers (LAPACK)
— sparse-direct methods
— iterative methods

infinitely many unknowns
⇒ finitely many unknowns



A few lessons of history
• All approaches still in widespread use

– brute force methods in 90%+ of papers, typically the first resort to 
see what happens in a new geometry

– geometry-specific spectral methods still popular, especially when 
particular geometry of special interest

– analytical techniques used less to solve new geometries than to prove 
theorems, treat small perturbations, etc.

• No single numerical method has “won” in general
– each has strengths and weaknesses, e.g. tradeoff between 

simplicity/generalizability and performance/scalability
– very mature/standardized problems (e.g. capacitance extraction) use 

increasingly sophisticated methods (e.g. BEM), research fields (e.g. 
nanophotonics) tend to use simpler methods that are easier to modify 
(e.g. FDTD) 
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Understanding Photonic Devices

420 nm

[ Notomi et al. (2005). ]
[ Xu & Lipson, 2005 ]

10µm

[Mangan, et al., 
OFC 2004 PDP24 ]

Model the whole thing at once?  Too hard to understand & design.

Break it up into pieces first: periodic regions, waveguides, cavities

20 µm



Building Blocks: “Eigenfunctions”
• Want to know what solutions exist in different regions

and how they can interact: look for time-harmonic modes ~ e–iωt

 


∇ ×

E = −µ ∂

∂t

H → iω


H


∇ ×

H = ε ∂

∂t

E +

J → −iωε


E

0

First task:
get rid of this mess

 
∇ ×

1
ε
∇ ×

H =ω 2 H

eigen-operator
(Hermitian for lossless/real e!)

eigen-value “eigen-field”

∇⋅

H = 0

+ constraint

1



Building Blocks: Periodic Media

homogeneous
media

2-D

periodic in
two directions

3-D

periodic in
three directions

1-D

periodic in
one direction

discrete periodicity: photonic crystals

waveguides

common thread:

translational
symmetry



Periodic Hermitian Eigenproblems
[ G. Floquet, “Sur les équations différentielles linéaries à coefficients périodiques,” Ann. École Norm. Sup. 12, 47–88 (1883). ]

[ F. Bloch, “Über die quantenmechanik der electronen in kristallgittern,” Z. Physik 52, 555–600 (1928). ]

if eigen-operator is periodic, then Bloch-Floquet solutions:

 

H (x,t) = ei


k ⋅ x−ω t( ) H k (

x)can choose:

periodic “envelope”
planewave

Corollary 1: k is conserved, i.e. no scattering of Bloch wave

Corollary 2:        given by finite unit cell,
so w are discrete ωn(k) 

H k



Electronic and Photonic Crystals
atoms in diamond structure
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Solving the Maxwell Eigenproblem

Hn(x) ei(k∙x – ωt)� 

∇ + ik( ) × 1
ε
∇ + ik( ) ×Hn = ωn

2

c 2
Hn

∇ + ik( ) ⋅Hn = 0

where field =

constraint:

1

Want to solve for ωn(k),
& plot vs. “all” k for “all” n,

Finite cell è discrete eigenvalues ωn

Limit range of k: irreducible Brillouin zone

2 Limit degrees of freedom: expand H in finite basis

3 Efficiently solve eigenproblem: iterative methods
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Solving the Maxwell Eigenproblem: 1
1 Limit range of k: irreducible Brillouin zone

2 Limit degrees of freedom: expand H in finite basis

3 Efficiently solve eigenproblem: iterative methods

—Bloch’s theorem: solutions are periodic in k

kx

ky
first Brillouin zone

= minimum |k| “primitive cell”

� 

2π
aΓ

M

X

irreducible Brillouin zone: reduced by symmetry



Solving the Maxwell Eigenproblem: 2a
1 Limit range of k: irreducible Brillouin zone

2 Limit degrees of freedom: expand H in finite basis (N)

3 Efficiently solve eigenproblem: iterative methods

H =H(xt ) = hmbm (x t )
m=1

N

∑ solve: ˆ A H =ω 2 H

Ah =ω 2Bh

  Aml = bm
ˆ A bl   Bml = bm bl

f g = f * ⋅g∫

finite matrix problem:

Galerkin method:inner product:



Solving the Maxwell Eigenproblem: 2b
1 Limit range of k: irreducible Brillouin zone

2 Limit degrees of freedom: expand H in finite basis

3 Efficiently solve eigenproblem: iterative methods

� 

(∇ + ik) ⋅H = 0— must satisfy constraint:

Planewave (FFT) basis

H(x t ) = HGe
iG⋅xt

G
∑

� 

HG ⋅ G + k( ) = 0constraint:

uniform “grid,” periodic boundaries,
simple code, O(N log N)

Finite-element basis
constraint, boundary conditions:

Nédélec elements
[ Nédélec, Numerische Math.

35, 315 (1980) ]

nonuniform mesh,
more arbitrary boundaries,

complex code & mesh, O(N)
[ figure: Peyrilloux et al.,

J. Lightwave Tech.
21, 536 (2003) ]



Solving the Maxwell Eigenproblem: 3a
1 Limit range of k: irreducible Brillouin zone

2 Limit degrees of freedom: expand H in finite basis

3 Efficiently solve eigenproblem: iterative methods

Ah =ω 2Bh

Faster way:
— start with initial guess eigenvector h0
— iteratively improve
— O(Np) storage, ~ O(Np2) time for p eigenvectors

Slow way: compute A & B, ask LAPACK for eigenvalues
— requires O(N2) storage, O(N3) time

(p smallest eigenvalues)



Solving the Maxwell Eigenproblem: 3b
1 Limit range of k: irreducible Brillouin zone

2 Limit degrees of freedom: expand H in finite basis

3 Efficiently solve eigenproblem: iterative methods

Ah =ω 2Bh
Many iterative methods:

— Arnoldi, Lanczos, Davidson, Jacobi-Davidson, …,
Rayleigh-quotient minimization



Solving the Maxwell Eigenproblem: 3c
1 Limit range of k: irreducible Brillouin zone

2 Limit degrees of freedom: expand H in finite basis

3 Efficiently solve eigenproblem: iterative methods

Ah =ω 2Bh
Many iterative methods:

— Arnoldi, Lanczos, Davidson, Jacobi-Davidson, …,
Rayleigh-quotient minimization

for Hermitian matrices, smallest eigenvalue ω0 minimizes:

ω0
2 = min

h

h*Ah
h*Bh

minimize by preconditioned
conjugate-gradient (or…)

variational
/ min–max

theorem



Band Diagram of 2d Model System
(radius 0.2a rods, ε=12)
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The Iteration Scheme is Important
(minimizing function of 104–108+ variables!)

Steepest-descent: minimize (h + α ∇f) over α … repeat 

ω0
2 = min

h

h*Ah
h*Bh

= f (h)

Conjugate-gradient: minimize (h + α d)
— d is ∇f + (stuff): conjugate to previous search dirs

Preconditioned steepest descent: minimize (h + α d) 
— d = (approximate A-1) ∇f   ~  Newton’s method

Preconditioned conjugate-gradient: minimize (h + α d)
— d is (approximate A-1) [∇f + (stuff)]



The Iteration Scheme is Important
(minimizing function of ~40,000 variables)
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The Boundary Conditions are Tricky

ε?

E|| is continuous

E⊥ is discontinuous
(D⊥ = εE⊥ is continuous)

Use a tensor ε:

� 

ε
ε

ε−1
−1

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

E||

E⊥[ Meade et al. (1993) ]



The ε-averaging is Important
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reason in a nutshell:
averaging 

= smoothing ε
= changing structure

… must pick smoothing
with zero 1st-order

perturbation

[ Farjadpour et al. (2006) ]



Closely related to anisotropic
metamaterial, e.g. multilayer film in 

large-λ limit

λ >> a

a

key to anisotropy is differing
continuity conditions on E:

E|| continuous ⇒ ε|| = <ε> 

D⊥=εE⊥ continuous ⇒ ε⊥ = <ε–1>–1

ε effij =
Di

Ej

=
εEi

Ej

=
Di

ε −1Dj



Intentional “defects” are good

3D Photonic C rysta l with Defects

microcavities waveguides (“wires”)



Intentional “defects” in 2d

a

(Same computation, with supercell = many primitive cells)

(boundary conditions ~ irrelevant
for exponentially localized modes)



Air-waveguide Band Diagram

any state in the gap cannot couple to bulk crystal –> localized

projection of bulk-crystal
band diagram



to be continued…

Photonic Crystals book: http://jdj.mit.edu/book

Bloch-mode eigensolver: http://jdj.mit.edu/mpb

Further reading:

http://jdj.mit.edu/book
http://jdj.mit.e/~stevenj/notes


Computational Nanophotonics:
Cavities and Resonant Devices

Steven G. Johnson
MIT Applied Mathematics



420 nm

[ Notomi et al. (2005). ]

Resonance
an oscillating mode trapped for a long time in some volume

(of light, sound, …)
frequency ω0

lifetime τ >> 2π/ω0
quality factor Q = ω0τ/2
energy in cavity ~ e–ω0t/Q

modal
volume V

[ Schliesser et al.,
PRL 97, 243905 (2006) ]

[ Eichenfield et al. Nature Photonics 1, 416 (2007) ]

[ C.-W. Wong,
APL 84, 1242 (2004). ]



Resonance = Pole in Green’s Function
an oscillating mode trapped for a long time in some volume

(of light, sound, …)
frequency ω0

lifetime τ >> 2π/ω0
quality factor Q = ω0τ/2
energy in cavity ~ e–ω0t/Q

modal
volume V

~ volume where
residue is large

Re ω

Im ω

×
simple pole
at ω0 – i/τ

near ω0, Green’s function is dominated by
contribution of the pole ~ a “resonant mode” profile 

response to a narrowband pulse
~ exponential decay in time

(in vicinity of the cavity)[causality/passivity: 
poles only for Im ω ≤ 0]



Green’s functions, briefly
Green’s function = field(s) at x from dipole at y

at a frequency ω

∇×#$%∇× − '() * + , = .'/ , − 0 × unit vector in :
⟹ electric “>?@>.A” Green’E function GG H, J = * % * ( * K

Similarly, 6×6 Green’s function ΓG ,, 0 gives *
N

= O

fields from 6-component currents ξ = Q
R

at via O = ΓG ∗ ξ.

… any electric current Q H T$UGV then gives the 
“convolution” * , = GG ∗ Q = ∫GG ,, 0 Q 0 >K0

At eigenvalue/resonance frequency ω0 (∇×#$%∇×*X = 'X
()*X), the 

operator ∇×#$%∇× −'X() becomes singular.  
Gω blows up = “pole” at 'X(



Microcavity Blues

For cavities (point defects)
frequency-domain has its drawbacks:

• Best methods compute lowest-ω eigenvals,
but Nd supercells have Nd modes
below the cavity mode — expensive

• Best methods are for Hermitian operators,
but losses requires non-Hermitian



Time-Domain Eigensolvers
(finite-difference time-domain = FDTD)

Simulate Maxwell’s equations on a discrete grid,
+ absorbing boundaries (leakage loss)

• Excite with broad-spectrum dipole (  ) source

Δω

Response is many
sharp peaks,

one peak per mode
complex ωn [ Mandelshtam,

J. Chem. Phys. 107, 6756 (1997) ]

tricky
signal processing

decay rate in time gives loss



Finite-difference-time-domain (FDTD) is a method to model Maxwell’s 
equations on a discrete time & space grid using finite centered differences

Hy
E y E x

Hx
E z

Hz

K.S. Yee 1966

A. Taflove & S.C. Hagness 
2005

∇ × E = −
∂B
∂t

∇ ×H =
∂D
∂t

+ J

D = εE B = µH

FDTD: finite difference time domain



1) at time t: Update D fields everywhere
using spatial derivatives of H, then find E=ε-1D

Ex +=
∆t 
ε ∆y ( Hz

j+0.5 – Hz
j-0.5 )

Ey -=
∆t 
ε ∆x ( Hz

i+0.5 – Hz
i-0.5 )

2) at time t+0.5: Update H fields everywhere using 
spatial derivatives of E

Hz +=  
∆t 
μ ( Ex

j+1– Ex
j + Ey

i – Ey
i+1)

∆x∆y

Hz

Ex

Ey

Ex

Ey
Hz

FDTD: Yee leapfrog algorithm
2d example:

CFL/Von Neumann stability: cΔt < 1 / √Δx–2+Δy–2



Free software: MEEP

• FDTD Maxwell solver: 1d/2d/3d/cylindrical
• Parallel, scriptable, integrated optimization, signal processing
• Arbitrary geometries, anisotropy, dispersion, nonlinearity
• Bloch-periodic boundaries, symmetry boundary conditions,

+ PML absorbing boundary layers…

http://ab-initio.mit.edu/meep



Absorbing boundaries?
Finite-difference/finite-element volume discretizations
need to artificially truncate space for a computer simulation.

In a wave equation,
a hard-wall truncation
gives reflection artifacts.

An old goal: “absorbing 
boundary condition” (ABC) 
that absorbs outgoing 
waves.

Problem: good ABCs are 
hard to find in > 1d.



Perfectly Matched Layers (PMLs)
Bérenger, 1994: design an artificial absorbing layer

that is analytically reflectionless

Works remarkably well.

Now ubiquitous in FD/FEM
wave-equation solvers.

Several derivations, cleanest
& most general via “complex
coordinate stretching”

[ Chew & Weedon (1994) ]



Perfectly Matched Layers (PMLs)
Bérenger, 1994: design an artificial absorbing layer

that is analytically reflectionless

Even works in inhomogeneous
media (e.g. waveguides).



PML Starting point: propagating wave
• Say we want to absorb wave traveling in +x direction

in an x-invariant medium at a frequency ω > 0.

 fields  f (y, z)e
i kx−ω t( )

(only x in wave
equation is via

terms.)
∂ / ∂x

(usually, k > 0)
[ rare “backward-wave”
cases defeat PML

(Loh, 2009) ] 



PML step 1: Analytically continue
Electromagnetic fields & equations are analytic in x,
so we can evaluate at complex x & still solve same equations

 
x = x +

iσ
ω
x

 fields  f (y, z)e
i kx−ω t( ) → f (y, z)e

i kx−ω t( )− k
ω
σ x

unchanged
(no reflection)

unchanged
(no reflection)



PML step 2: Coordinate transformation
Weird to solve equations for complex coordinates x,
so do coordinate transformation back to real x.

~

 
x(x) = x + iσ ( ′x )

ω
d ′x

x

∫

 

∂
∂x

→
∂
∂x

→
1

1+ iσ (x)
ω

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

∂
∂x

 fields  f (y, z)e
i kx−ω t( ) → f (y, z)e

i kx−ω t( )− k
ω

σ ( ′x )d ′x
x

∫

(allow x-dependent
PML strength s)

nondispersive materials: k/ω ~ constant
so decay rate independent of ω

(at a given incidence angle)

1 2



PML Step 3: Effective materials
In Maxwell’s equations,
coordinate transformations are equivalent to transformed materials

(Ward & Pendry, 1996: “transformational optics”)

∇ × E = iωµH, ∇ ×H = −iωεE + J,

x PML Jacobian

J =
1+ iσ /ω( )−1

1
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

{ε,µ}→ J{ε,µ}JT

det J

{ε,µ}→ {ε,µ}
(1+ iσ /ω )−1

1+ iσ /ω
1+ iσ /ω

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

for isotropic starting materials:

PML = effective anisotropic “absorbing” ε, μ

effective
conductivity

 

∂x
∂x

⎛
⎝⎜

⎞
⎠⎟



Photonic-crystal PML?

x

ε not even continuous
in x direction,

much less analytic!

Analytic continuation of Maxwell’s equations is hopeless
— no reason to think that PML technique should work

FDTD (Meep) simulation:

?
?
?
?
?



Photonic-crystal PMLs: Magic?
[ Koshiba, Tsuji, & Sasaki (2001) ]

[ Kosmidou et al (2003) ]

… & several other authors …
Low reflections claimed

— is PML working?
Something suspicious: 

very thick absorbers.

PM
L



Failure of Photonic-crystal “pseudo-PML”

1d test case:

(pseudo-)
PML in

periodic ε
reflection

doesn’t → 0
as ∆x → 0

… similar
to non-PML

scalar σ

in uniform ε=1 medium,
PML reflection → 0

for exact wave equation

[ Oskooi et al, Optics Express 16, 11376 (2008) ]



Redemption of the pseudo-PML:
slow (“adiabatic”) absorption turn-on

Any absorber,
turned on gradually
enough, will have
reflections → 0!

PML (when it works)
just helps coefficient.

[ Oskooi et al, Optics Express 16, 11376 (2008) ]



What about DtN / RCWA / Bloch-
mode-expansion / SIE methods?

— useful, nice methods that can impose outgoing boundary conditions
exactly, once the Green’s function / Bloch modes computed

challenge problem for any method:
periodic 3d dielectric waveguide bend in air

(note: both guided and radiating modes!)

… DtN / Green’s function / Bloch modes (incl. radiation!) expensive



Computational Nanophotonics:
Sources & Integral Equations

Steven G. Johnson
MIT Applied Mathematics



How can we excite a desired 
incident wave?

??

Want some current source
to excite incident waveguide
mode, planewave, etc…

— also called transparent
source since waves
do not scatter from it

(thanks to linearity)

— vs. hard source =
Dirichlet field condition



Equivalent currents
(“total-field/scattered-field” approach)

known incident fields

in ambient medium
(possibly inhomogeneous,

e.g. waveguide or photonic crystal)

f + = E
H

⎛
⎝⎜

⎞
⎠⎟

c

f+

f+
f=0

equivalent
currents

want to construct
surface currents

c = J
K

⎛

⎝⎜
⎞

⎠⎟

giving same f+ in Ω

f++f– f–

[ review article: arXiv:1301.5366 ]

do simulations
in finite domain
+ inhomogeneities

/ interactions
= scattered field f–



The Principle of Equivalence
in classical EM

(or Stratton–Chu equivalence principle)
(formalizes Huygens’ Principle)

(or total-field/scattered-field, TFSF)
(near-to-far-field transformation)

(close connection to Schur complement [Kuchment])
[ see e.g. Harrington,  Time-Harmonic Electromagnetic Fields ]

[ review article: arXiv:1301.5366 ]



starting point: solution in all space

medium χ
Ω

incident
fields f+

f + = E
H

⎛
⎝⎜

⎞
⎠⎟

6-component
fields:

∇×
−∇×

⎛

⎝⎜
⎞

⎠⎟
f + = −iωχf +

solve (source-free) Maxwell PDE (in frequency domain):



constructing solution in Ω

Ω

construct c so that f is a new solution:

f = 0

f = f+

equivalent
“6”-component
surface currents

c

n

∇×
−∇× $ = −&'($ + * +Ω −-×./

-×0/
= −&'($ + 1

“electric” current
“magnetic” current



Exciting a waveguide mode in FDTD

[ review article: arXiv:1301.5366 ]

(constant J)

— compute mode in MPB, then use as source in MEEP



Problems with equivalent sources

• Discretization mismatch: at finite resolution, solutions from
one technique (MPB) don’t exactly match discrete modes 
in another technique (Meep) — leads to small imperfections

— solvable by using the same discretization to find modes

• Dispersion: mode profile varies with ω, so injecting a pulse p(t)
requires a convolution with c(x,ω) c(x,t)

Fourier

currents(x,t) = p(t) * c(x,t) ≈ p(t) c(x,ω)

ˆ

(if not solved, undesired excitation of other waves)

– convolutions expensive, can be approximated by
finite-time (FIR/IIR) calculations using DSP techniques

– specialized methods are known for planewave sources

[ review article: arXiv:1301.5366 ]

ˆ
narrow-bandwidth

(have numerical dispersion!)

tim
e 

do
m

ai
n 

on
ly



Shortcut: Subtract two simulations
example: 90° bend of single-mode dielectric waveguide

simple
constant-amplitude

line-current J same J

1

2

1

want incident, transmitted,
and reflected energy-flux spectra:

incident: Poynting flux of fstraight

transmitted: flux of fbend

reflected: flux of fbend–fstraight

f̂1,2bend,straight (x,ω ) = f(x,nΔt)eiωnΔt
n
∑

accumulate (discrete-time)
Fourier transforms of fields:

at desired frequencies ω

2ˆ

2ˆ

1ˆ 1ˆ

2



Shortcut: Subtract two simulations
example: 90° bend of single-mode dielectric waveguide

(waveguide width) / λ



Shortcut: Planewave sources
for periodic media

trick #1: incident & scattered fields
are Bloch-periodic/quasiperiodic

[ review article:
arXiv:1301.5366 ]

Bloch-periodic eikxa

trick #2: eikxx current source
produces planewave



Reflection spectra example
for periodic media

(Fano resonance lineshapes)

note: ω all above
light line

(req. for incident planewave) entire spectrum at fixed kx
from single FDTD simulation
(Fourier transform of pulse)
+ normalization run

ω/c sin(θ) = kx
⟺ curved line

θ = asin(ckx/ω)
in (ω,θ) plot



Fun possibilities in FDTD:
moving sources [= just some currents J(x,t) ]

Cerenkov radiation from moving
point charge in dielectric medium

Doppler shift from
moving oscillating dipole



Cerenkov radiation
charge density ρ = qδ (x − vt)

⇒ current density

Jx = qvδ (x − vt)

= qv
2π

eik (x−vt ) dk
−∞

+∞

∫

= ei(kx–ωt)
if ω(k)=kv

excites radiating mode ω(kx,ky)
if  v = ω(kx,ky)/kx

= phase velocity in x direction
≥ c/n in index-n medium

xq



Cerenkov radiation in photonic crystal
excites radiating mode ω(kx,ky)
if  v = ω(kx,ky)/(kx + 2πm/a)

for any integer m

⇒ no minimum v
[ Smith–Purcell effect ]

q v

very different radiation
patterns & directions
depending on v,
due to interactions with
2d PhC dispersion curves

[ Luo, Ibanescu, Johnson,
& Joannopoulos (Science, 2002) ]



Surface-integral equations (SIEs)
and

boundary-element methods (BEMs)

[ see e.g. Harrington,  Time-Harmonic Electromagnetic Fields ]

Harrington, “Boundary integral formulations for homogeneous
material bodies,” J. Electromagnetic Waves Appl. 3, 1–15 (1989)

Chew et al., Fast and Efficient Algorithms
in Computational Electromagnetics (2001) ]. 



Exploiting partial knowledge
of Green’s functions

medium 0

medium 1

incident
fields

scattered
fields

interior
fields

suppose that we know Green’s functions
in infinite medium 0 or medium 1

— known analytically for homogeneous media
— computable by much smaller calculation in periodic medium

a typical scattering problem:

Can exploit this to derive integral equation for surface unknowns only.



The Principle of Equivalence
in classical EM

[ see e.g. Harrington,  Time-Harmonic Electromagnetic Fields ]

medium 0

medium 1

incident
fields f0+

f 0 = E
H

⎛
⎝⎜

⎞
⎠⎟
= f 0+ + f 0−6-component

fields:

scattered
fields f0–

interior
fields f1

… we want to partition
into separate medium 0/1
problems & enforce continuity…

∇×
−∇×

⎛

⎝⎜
⎞

⎠⎟
f = −iωχ (0,1)f

Maxwell PDE:



Constructing a medium-0 solution

medium 0

medium 0

same 
incident
fields f0+

same
fields f0– f=0  (!!)

“equivalent”
6-component
surface currents
c

modified Maxwell PDE: n

∇×
−∇× $ = −&'($ + * +Ω −-×./

-×0/
= −&'($ + 1

“electric” current
“magnetic” current



The Principle of Equivalence I

[ e.g. Harrington, Time-Harmonic Electromagnetic Fields ]

medium 0

medium 0

incident
fields f0+

f 0 = E
H

⎛
⎝⎜

⎞
⎠⎟
= f 0+ + f 0− = f 0+ + Γ0 ∗c

same
scattered
fields f0– of c

f=0  (!!)

“equivalent”
6-component
surface currents
c

convolution with
6x6 Green’s function Γ0

of homogenous medium 0



The Principle of Equivalence II

[ e.g. Harrington, Time-Harmonic Electromagnetic Fields ]

medium 1

medium 1

f1 = −Γ1 ∗c

opposite-sign
6-component
surface currents

– c

convolution with
6x6 Green’s function Γ1

of homogenous medium 1

f=0



Surface-Integral Equations (SIE)

[ e.g. Harrington, Time-Harmonic Electromagnetic Fields ]

medium 0

medium 1

f1 = −Γ1 ∗c

f 0 = f 0+ + Γ0 ∗c

c determined by
continuity of tangential fields

at 0/1 interface:

unknown
c

Γ0 + Γ1( )∗c
tangential

= −f 0+
tangential



Discretizing the Maxwell SIE

[ e.g. Harrington, Time-Harmonic Electromagnetic Fields ]

unknown
cΓ0 + Γ1( )∗c

tangential
= −f 0+

tangential

pick some basis bn (n=1,…,N→∞)
for surface-tangential vector fields

c = xnbn
n
∑ N discrete

unknowns xn
⇒ N equations



Discretizing the Maxwell SIE

[ e.g. Harrington, Time-Harmonic Electromagnetic Fields ]

unknown
cbm Γ0 + Γ1( )∗ xnbn

n
∑⎛⎝⎜

⎞
⎠⎟

= bm −f 0+

pick some basis bn (n=1,…,N→∞)
for surface-tangential vector fields

c = xnbn
n
∑ N discrete

unknowns xn
⇒ N equations Mx = s

Galerkin method — require error ⊥ basis:

Mmn = bm Γ0 + Γ1( )∗bn =Gmn
0 +Gmn

1

sm = bm −f 0+



Discretized SIE: Two Objects

c1 = xn
1bn
1

n
∑

medium 1

medium 2

medium 0

c2 = xn
2bn

2

n
∑

⇒ linear equations Mx = s

M =G0 + G1

0
⎛

⎝⎜
⎞

⎠⎟
+ 0

G2

⎛

⎝⎜
⎞

⎠⎟

… + straightforward generalizations to more objects,
nested objects, etcetera



SIE basis choices
• Can use any basis for c = any basis of surface functions

… basis is not incoming/outgoing waves
& need not satisfy any wave equation

• Spectral bases: spherical harmonics, Fourier series, …
… nice for high symmetry

~ uniform spatial resolution
• Boundary Element Methods (BEM):

localized basis functions defined on irregular mesh

“RWG” basis (1982):

vector-valued bn defined
on pairs of adjacent triangles
via degree-1 polynomials



BEM strengths
especially small surface areas in a large (many-λ) volume, e.g.:

[ Johannes Feist, Harvard ]

silver
nanotip

surface plasmons (metals):
extremely sub-λ fields

complex impedance
of passive structures

[ Llatser et al. (2012) ]

Graphene
~ delta-function

surface conductivity
= jump discontinuity

(~ E) in H field



The bad news of BEM

Mmn = bm Γ0 + Γ1( )∗bn =Gmn
0 +Gmn

1

• Not well-suited for nonlinear, time-varying, or
non-piecewise-constant media

• BEM system matrix

— singular integrals for overlapping bm, bn
…special numerical integration techniques

— M is not sparse, but:
often small enough for dense solvers (≲ 104×104) 
+ “fast solvers:” approximate sparse factorizations

(fast multipole method, etc.)
— lots of work every time you change Γ

(e.g. 3d vs. 2d, periodic boundaries, anisotropic, …)
… but independent of geometry



The good news of BEM:
You don’t have to write it yourself

Free software developed by Dr. Homer Reid
(collaboration with Prof. Jacob White @ MIT)

SCUFF-EM

[ https://github.com/HomerReid/scuff-em ]

https://github.com/HomerReid/scuff-em


https://github.com/HomerReid/scuff-em

https://github.com/HomerReid/scuff-em


SCUFF usage outline



Geometries in SCUFF



Geometries in SCUFF

(discretization of SIE at junctions of 3+ materials is a bit tricky)



Periodic geometries in SCUFF

(implementing periodicity is nontrivial: changes Green’s function!
SCUFF: periodic Γ = Σ(nearest neighbors) + Ewald summation)



Using SIE/BEM solutions
Solving the SIE gives the surface currents c, and
from these (via Γ*c) one can obtain any desired fields, but…

It is much more efficient to compute as much as possible
directly from c (~ n× surface fields).  Examples:

• Scattering matrices (e.g. spherical-harmonic waves in → out):
obtain directly from multipole moments of “currents”

• Any bilinear function of the surface fields can be computed
directly from bilinear functions of c:  

— scattered/absorbed power, force, torque, …

• Net effects of quantum/thermal fluctuations in matter can
be computed from norm/det/trace of M or M–1:

— thermal radiation, Casimir (van der Waals) forces, …

https://arxiv.org/abs/1307.2966

https://arxiv.org/abs/1307.2966


Resonant modes
(and eigenvalues)

• BEM scattering problems are of the form M(ω)x = s.
Resonances (and eigenvalues) are ω where this system
is singular, i.e. the nonlinear eigenproblem

det M(ω) = 0

For passive (⇒causal) systems, solutions can only occur
for Im ω ≤ 0.  

• Various algorithms exist, including an intriguing algorithm
using contour integrals of M(ω) [ Beyn (2012) ].



to be continued…

Free FDTD software: http://jdj.mit.edu/meep
Free BEM software:

http://homerreid.ath.cx/scuff-EM/

Review on wave sources:
arXiv:1301.5366 [ in Taflove, Oskooi, & Johnson, eds.,

Advances in FDTD Comput. EM (2013) ]        

Further reading:

http://jdj.mit.edu/meep
http://homerreid.ath.cx/scuff-EM/


Computational Nanophotonics:
Optimization and “Inverse Design”

Steven G. Johnson
MIT Applied Mathematics



Many, many papers that parameterize
by a few degrees of freedom and optimize…

Today, focus is on large-scale optimization,
also called inverse design:

so many degrees of freedom (102–106)
that computer is “discovering” new designs.



Outline

• Brief overview/examples of
large-scale optimization work in photonics

• Overview of optimization terminology,
problem types, and techniques.

• Some more detailed photonics examples.



Outline

• Brief overview/examples of
large-scale optimization work in photonics

• Overview of optimization terminology,
problem types, and techniques.

• Some more detailed photonics examples.



Optical design = optimization

gradient-based (“adjoint”) 
optimization (>105 params, 3D)

[Sigmund et. al. Las. 
Phot. Rev. 5, 308 (2011)]

[X. Liang & SG Johnson 
Opt. Exp. 21, 30812 (2013)]

“black-box” optimization 
(typically << 100 params)

traditional approach: intuition + “tweaking” few parameters 

[Noda et. al. 2003]
[Brongersma et. al. 2010]

[Villegas et. al. 2004] [Hakansson et. al. 2005]

[Yu et. al. 2010]
[Zhou et. al. 2010]



Large-scale optimization in photonics:
“Every pixel” is a degree of freedom

bend optimization

Sigmund et al.,
Opt. Express 12, 1996 (2004)

OE 12, 5916 (2004)

Ganapati et al. IEEE Jour. of Photovolt. 4, 175 (2014)

solar-cell backreflector optimization

2d band gaps

Dobson (1999)



Topology optimization

Given two (or more) materials
A and B, determine what arrangement

— including what topology —
optimizes some objective/constraints.

Electromagnetism:
Materials (mostly) described by

permittivity (dielectric constant) ε
(susceptibility χ=ε–1)

A
B

B



Discretizing Topology Optimization

some computational grid

for computer, need finite-dimensional, differentiable parameters

Level-set method: value of
“level-set” function φ(x) varies
continuously at each pixel
⇒ material A or B if φ > 0 or < 0

“Density-based topology optim.”
Continuous relaxation: material

varies in [A,B] at each pixel

e.g. in electromagnetism, let ε at each
pixel vary in [A,B].

… or …

(+ filtering methods to 
constrain minimum 
feature sizes and 
“binary-ize” result)



Outline

• Brief overview/examples of
large-scale optimization work in photonics

• Overview of optimization terminology,
problem types, and techniques.

• Some more detailed photonics examples.



A general optimization problem

 
min
x∈n

f0 (x) minimize an objective function f0
with respect to n design parameters x
(also called decision parameters, optimization variables, etc.)

— note that maximizing g(x)
corresponds to f0 (x) = –g(x)subject to m constraints

fi (x) ≤ 0
i = 1,2,…,m

note that an equality constraint
h(x) = 0

yields two inequality constraints
fi(x) = h(x) and fi+1(x) = –h(x)

(although, in practical algorithms, equality constraints 
typically require special handling)x is a feasible point if it

satisfies all the constraints
feasible region = set of all feasible x



Important considerations

• Global versus local optimization
• Convex vs. non-convex optimization
• Unconstrained or box-constrained optimization, and 

other special-case constraints
• Special classes of functions (linear, etc.)
• Differentiable vs. non-differentiable functions
• Gradient-based vs. derivative-free algorithms
• …
• Zillions of different algorithms, usually restricted to 

various special cases, each with strengths/weaknesses

photonics: mostly
local optima in
non-convex problems



Relaxations of Integer Programming
If x is integer-valued rather than real-valued (e.g. x ∈ {0,1}n),
the resulting integer programming or combinatorial optimization
problem becomes much harder in general (often NP-complete).

However, useful results can often be obtained by a continuous
relaxation of the problem — e.g., going from x ∈ {0,1}n to x ∈
[0,1]n

… at the very least, this gives an lower bound on the optimum f0
… and penalty methods (e.g. SIMP) can be used to gradually

eliminate intermediate x values.

Leads to “density based” topology optimization, many methods to 
impose feature-size constraints etc.



Derivatives are essential

 
min
x∈n

f0 (x)

subject to m constraints

fi (x) ≤ 0
i = 1,2,…,m

minimize an objective function f0
with respect to n design parameters x
(also called decision parameters, optimization variables, etc.)

For n ≥ 1000’s of parameters,
impractical unless you have

computed “analytically”
(not by finite differences).

∇x fi (x)
i = 0,1, 2,…,m



Impossible to explore/optimize a 
106-dimensional parameter space 

without derivatives.

(Gradient tells you which direction 
to go for improvement.)

(Only local optimization with this many 
parameters, but can still find very good designs, 

sometimes with provable guarantees.)



Amazing fact of adjoint methods:
all 106 derivatives with two simulations

physical intuition: Born approximation + reciprocity

incident
wave scattered field

field E0

“forward” solve

scattered field
+ perturbation ΔE

= field of
J = Δε E0

perturbed pixel Δε,
expensive: repeat for each pixel?



Amazing fact of adjoint methods:
all 106 derivatives with two simulations

physical intuition: Born approximation + reciprocity

scattered field
+ perturbation ΔE

= field of
J = Δε E0

perturbed pixel Δε,
repeat for each pixel?

=
(reciprocity)

source at scattered
measurement point

solve one adjoint problem
… get fields at all perturbed pixels



Adjoint methods, in math
cost of ∇f ~ one extra f(x) evaluation

[ google “adjoint method” for reviews ]

toy example: maximizing transmitted power from a source

Maxwell’s equations discretized as:
[ real variables, e = real/imag parts ]

Quadratic objective:
[Q assumed symmetric]

M (x)e = s
Maxwell matrix
(parameters x)

EM
fields source

f (x) = eTQe

∂f
∂xi

= 2eTQ ∂e
∂xi

= −2eTQM −1 ∂M
∂xi

e = 2aT ∂M
∂xi

e

MTa =Qeadjoint problem: = one extra solve with
transposed (adjoint) M



(Don’t let the reciprocity intuition fool you.)

There is a general prescription that is 
independent of the physics — even for 

nonreciprocal, nonlinear,
and time-varying problems.

(google “adjoint method notes”)

(also known as “reverse mode” differentiation or, in 
machine learning, as “backpropagation”)



Sometimes, non-obvious 
transformations are required

to make the problem differentiable.



Designing photonic band gaps

[ Y. A. Vlasov et al., Nature 414, 289 (2001). ]

periodic structures (“photonic crystals”) have
Bloch-wave “quasiperiodic” solutions = periodic(x) × eikx–iωt

fr
eq

ue
nc

y
ω

wavevector k

photonic band gap

band diagram (dispersion relation)

In the gap, crystal is “optical insulator” that can trap light.



Maximizing photonic band gap 
over all periodic structures?

we want: max
ε

2
min
k
ωn+1(k)⎡

⎣
⎤
⎦ − max

k
ωn (k)⎡

⎣
⎤
⎦

min
k
ωn+1(k)⎡

⎣
⎤
⎦ + max

k
ωn (k)⎡

⎣
⎤
⎦

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

frequently not differentiable 

an equivalent problem
(“epigraph” transformation
for “minimax” problems):

…with
(mostly?) differentiable
nonlinear constraints:

max
ε , f1, f2

2 f2 − f1
f2 + f1

⎛
⎝⎜

⎞
⎠⎟

subject to:
f1 ≥ωn (k)
f2 ≤ωn+1(k)

for k ∈ "



Optimizing 1st TM and TE gaps
for a triangular lattice with 6-fold symmetry

(between bands 1 & 2)

48.3% TM gap (e = 12:1)

30 iterations of optimizer

51.4% TE gap (e = 12:1)



Optimizing 1st complete 
(TE+TM) 2d gap

21.1% gap (e = 12:1)

20.7% gap (e = 12:1)



+ some local minima

–0.5% gap

–10% gap

–2% gap

good news: only a handful of minima (in 103-dimensional space!)



3d gap optimization
[ given symmetry group + which bands ]

~ 100x100x100 = 106 degrees of freedom (ε in every “voxel”)



Gap vs Index Contrast
“negative” result:
seems to indicate
diamond lattice
of holes
[previously
discovered
“by hand”:
Ho et al. (1990) ]
is best, and
has gap for
Δn ≥ 1.9:1



Key questions occur before
choosing optimization algorithm:

• How to parameterize the degrees of freedom
— how much knowledge of solution to build in?

• Which objective function & constraints?
— many choices for a given design goal,

… can make an enormous difference in the
computational feasibility

& the robustness of the result.



Outline

• Brief overview/examples of
large-scale optimization work in photonics

• Overview of optimization terminology,
problem types, and techniques.

• Some more detailed photonics examples.



3d Microcavity Design Problem

???planar (2d) patternetched in 3d slab???

Want some 2d pattern
that will confine light in 3d
with maximal lifetime (“Qrad”)
and minimal modal volume (“V”) 

radiation loss
(finite Qrad)

V

Many ad hoc designs,
trading off Qrad and V…
ring resonators

[ Song, (2005) ]

[ Loncar, 2002 ]

[ Akahane, 2003 ]

(“defects”
in periodic
structures)



Resonances = complex ω ~ 
frequency - i loss

Rybin et. al (2017): arXiv:1706.02099

Re ω

Im ω

×××
×
×
×
×
×

×××

×
×
×

×
×

resonances = poles in scattering
= poles in Green’s function
= singular Maxwell operator M(ω)

!×!×−$%& ' = iω+ = ,
M(ω) singular at resonance ω



Optimize resonances?

Re ω

Im ω

×
×

×

×

×

×

×

×

××
×

×

×

×

×

optimize
structure

Challenges:

Which eigenvalue?

Interior eigenvalue of
big non-Hermitian…

Tracking eigenvalue
(no discontin. jumps!)



Optimize resolvent instead

Re ω

Im ω

×
×

×

×

×

×

×

×

××
×

×

×

×

×

optimize
structure

“target” ω0

maximize
Re ψ*M(ω0)–1ψ

= Re f(ω)

instead for some ψ

… many key physical
quantities in this form!

= total power expended 
by a source or
incident wave ψ

[ X. Liang & S. G. Johnson, Optics Express (2013). ]



Back to cavity optimization…
Typical figure of merit is “Purcell factor” Q/V

(~ enhancement of light-matter coupling)

= approximation for LDOS (local density of states)
= power expended by dipole source Re ψ*M(ω0)–1ψ for ψ = dipole

Naively, should we maximize Q/V or LDOS?

R

V ~ R
Qrad ~ exp(# R)

Trivial design problem: maximum Q/V = ∞
[ for lossless materials,
e.g. perfect ring resonator of ∞ radius ] 



Real design problem: maximize LDOS
averaged over desired bandwidth ω0±Γ0

[ review: 
arXiv:1301.5366 ]

[ Liang & Johnson (2013) ]



LDOS: Local Density of States
[ review: arXiv:1301.5366 ]

Maxwell eigenproblem: Maxwell vector-Helmholtz:

Power radiated by a current J (Poynting’s theorem)

special case of a dipole source: LDOS



Why a “density of states”
[ review: arXiv:1301.5366 ]

consider a
finite domain

(periodic/Dirichlet)

countable eigenfunctions
E(n) and frequencies ω(n)

+ small absorption

– iγ(n)

P =

loss → 0: a localized measure of spectral density



Complex target ω0 = Frequency average
• Passivity/causality: M(ω)–1 analytic for Im ω > 0

[Owen Miller et. al. Phys. Rev. Lett. 112, 123903 (2014)]

average = Re ∫#$
$ % & '(/*

+#+( ,-'(,
.& =Re[2%(&4+iΓ4)]

via contour integration

Re ω

Im ω

×××
×
×
×
×
×

×××

×
×
×

×
×

×
×

resonances (poles in A)

ω0±iΓ0

averaging
window

Get entire ω average
with a single “unphysical”
complex-ω solve!

[ X. Liang & S. G. Johnson, Optics Express (2013). ]

f(ω) = ψ*M(ω0)–1ψ



Complex ω = ω average: Lots of uses
3d optimization of
absorbing particles

(frequency-averaged
absorbed+scattered power)

Modeling Casimir/van der Waals force

[ Rodriguez et al., Nature Photonics (2011) ]

integrating fluctuations over all ω
= much nicer integral over Im ω

• General derivation of Wheeler–Chu limits via contour integration
[ Sohl, Gustafsson, Kristensson (2007) ]

• Extension of “Miller” bounds to finite bandwidth [ Shim (2019) ]

• Proof that cloaking bandwidth scales ~ 1/diameter [ Hashemi (2010) ]

[Owen Miller et. al. (2014)]



4 out of 10 6 out of 10

in-plane J

Jx

JyMaximizing LDOS for random in-plane J
= max[LDOS(ω,Jx)+LDOS(ω,Jy)]/2

Spontaneous symmetry breaking!  “Picks” one polarization randomly



3d results: Photonic-crystal slab

Next: 2d pattern in 3d slab

(including radiation loss via
PML absorbing boundaries)

Optimize with Q0=104

i.e. prefer Q ≥ 104 but
after that mainly
minimize V

[ X. Liang & S. G. Johnson, Optics Express (2013). ]



2d pattern in 3d slab

3d Slab Results

Q ~ 30,000, V ~ 0.06(λ/n)3

vs. hand-optimized:
Q ~ 100,000, V ~ 0.7(λ/n)3

Q ~ 300,000, V ~ 0.2(λ/n)3

and others…

after deleting “hairs”:
Q ~ 10,000

(without re-optimizing)

[ X. Liang & S. G. Johnson (2013). ]



Manufacturability: Feature-size constraints
[ Wang, Christiansen, Yu, Mørk, and Sigmund, Appl. Phys. Lett. 113, 241101 (2018) ]

Various techniques to impose a minimum feature size, 
connectivity, and other manufacturing constraints in TO.

no constraint:

feature-size
constraint:

various size cavities



Intra-cavity 2nd-harmonic generation

input/output channel
cavity
ω1

ω2=2ω1

Q1

Q2

χ(2)

nonlinearity

P o
ut

at
 ω

2
/ P

in
at

 ω
1

power in (nondimensionalized)

[ Rodriguez et al, 2007 ]

theory: 100% conversion
at critical input power

… tricky part is designing
cavity with simultaneous,
spatially overlapping
resonances at ω1 & ω2



Hand-design SHG cavity

ω1 ω2≈2ω1

[ Bi et al. (2012) ]

~80–90% efficiency (2d & 3d)
for AlGaAs, 30mW power, at telecom
wavelengths with 0.1% bandwidth

…
months of hand-tuning to find
compatible resonance modes



SHG by “LDOS” optimization
[ Lin, Liang, Lončar, Johnson, and Rodriguez, Optica, vol. 3, pp. 233–238 (2016). ]

key idea:

source J1 at ω1
⟹ E1
⟹ J2 ~ χ(2) E1

2

⟹ E2
⟹ power at ω2

Maximizing SHG
= maximizing
composition of
two scattering problems.



SHG by “LDOS” optimization
[ Lin, Liang, Lončar, Johnson, and Rodriguez, Optica, vol. 3, pp. 233–238 (2016). ]

ω1 ω2

gave factor of 10
increase in 
mode-overlap
figure of merit
vs.
best hand design

optimized VCSEL-like multilayer-film
(~hundreds of degrees of freedom)



Topology optimization for nonlinear frequency conversion

Inverse 
Designs

[ Lin et al, Optica Vol. 3, 233 (2016) ] 

(figs courtesy Z. Lin)

extension to 3d



Surface-enhanced Raman Scattering
[ R. Christiansen, arXiv:1911.05002 (2019) ]

[ Image: 
M. K. Oo, UMich ]

incident “pump”
at ω

emitted
at ω–Δω

Raman
molecule

enhance Raman both by focusing incident wave and by 
enhancing emission (Purcell effect) … what structure is best?

resonant
structures
(metal particles)



Optimization for Raman Scattering
[ R. Christiansen, arXiv:1811.12936 (2019) ]

every “pixel” in ??? Region
is a design degree of freedom

maximize output power Ag nanoparticle
optimization steps:

λ=532nm

200nm
20nm

Raman
molecule



60× better than typical resonators
[ R. Christiansen, arXiv:1811.12936 (2019) ]

Very 
promising 2d 

results!

… 3d 
optimization 

currently 
running

optimized
“bowtie” antenna



“Metasurface” optical devices:

(M.Khorasaninejad, W. T. 
Chen, R. C. Devlin, J.Oh, A. 
Y. Zhu ,F. Capasso, 
Science, June 3 2016)

M. Khorasaninejad et al.,. IEEE J. Sel. Top. 
Quantum Electron. 23, 4700216 (2017) 

Capasso group (Harvard)

Large-area (often 100–1000λ) nanopatterned
surfaces designed to reflect/transmit desired 
waves — e.g. flat-lens focusing, beamforming, 
etc.

“Meta:” << λ pattern 
acts like effective 
surface “impedance”. 
(Not really necessary.)



A typical “metalens” problem

?????
sub-λ

pattern ??????

Focal spot =
maximize
|electric field E|2

incident light (planewave)

Complication: focus multiple incident λ and/or angles simultaneously?



Why is it a hard problem?

• complex aperiodic pattern
• High material contrast
• Rapidly varying (λ), big

Very hard forward problem
Even if design is given, simulating it requires a
super computer for one brute-force simulation

Inverse problem intractable?
We are not given the design!

Ex: maximize !" at focal spot à
search 10% parameters for best focus

[Arbabi, A. et al.
Nat. Nanotechnol.
10, 937–943 (2015)]

Capasso group (Harvard)

500 
nm

100 
µm

2 
µm



Large-scale metasurface optimization by domain decomposition

many possible objective functions,
(including broad-band/multi-ω) 

focal-spot intensity:

wavefront matching:

LPA

ODA

Metasurface
Unit cell

Important Notes:
• You cannot optimize each cell individually. 

All the DOFs (>106) over the entire surface 
must be considered and updated together.

• No need to restrict oneself to sub-l domains; 
domain >> l tend to work better.

[ Pestourie et al. (2018); Lin et al. (2019) ]

• Subdivide surface into small (≲10λ) cells, 
solve in parallel using either LPA or (better) 
overlapping non-periodic domains (ODA)

• “Stitch” together using near-to-farfield
transformation to get fields anywhere.

• Optimize cells (together) for any desired 
objective.



Few parameters per cell: library approach
[ R. Pestourie, et al., Optics Express (2018). ]

Silica

TiO2Air

width w

if each cell has only
a few parameters…

just precompute diffraction
coefficients vs. parameters (in LPA)

just interpolate from this “library”
during optimization

over 1000s of parameters

optimized metalens

few minutes
on a laptop!



A small metalens optimization problem

Maximize the 0th-order 
transmitted |E|2 at a focal point 
as a function of pillar widths in 
every cell (here, 40 pillars).

“Boring” off-the shelf 
nonlinear optimization 
algorithm: CCSA algorithm 
[Svanberg (2001)]

[ R. Pestourie, et al., Optics Express (2018). ]



Brute-force (FDFD) validation

Seconds on a laptop

180,000x faster

20 wavelengths, 
40 unit cells

20 wavelengths, 
40 unit cells

(0th-order)

[ R. Pestourie, et al., Optics Express (2018). ]



Optimization + experiment:
extended depth-of-focus metalens

[ collaboration with A. Majumdar, UW (2019) ]

e-beam cylindrical lens

10µm

Theory Experiment

(SiN on fused silica)
(λ = 633nm)

44µm depth of focus, focal length 133µm



Topology Optimization for Metasurfaces

Structural	evolution	of	a	
large-area	(100	x	100	l2)	
metalens during	topology	
optimization		~ 106 DOF

domain decomposition (LPA / ODA)
+

1000s of parameters per domain
=

millions of parameters in total

[ Lin et al. (2019) ]

Every “pixel” is
a degree of freedom

… possibly in multiple layers!



Difficult metasurface designs

RGB 2-layer lens
(NA = 0.71, 200λ diameter, 50% efficiency)

Concentrator:
multiple angles, same focus

RGB 2-layer
3d lens

(NA = 0.44) now fully achromatic lens…



NA = 0.71
Lens size: 200 ls 
Average focusing 
efficiency > 50%

Topology-optimization thrives in a large design space …
15 layers of 
140 nm thickTiO2

Proof-of-concept 2D design:
large size 

+ high NA 
+ broadband
+ by far, the best efficiency 

Note: Full FDTD 
validation of the entire 
lens.

Achromatic (480–700nm) metalens
[ Lin et al (2019) ]



Optimization is not just
throwing parameters at a computer.

To get a tractable problem,
domain-specific expertise goes into how you
formulate the objective & parameters. Many 

physical similar choices that have very 
different mathematical properties!

Many design problems remain to be attacked,
& several recent bounds far from attained.


