18.336 Pset 4 Solutions

Due Thursday, 20 April 2006.

Problem 1: Galerkin warmup

For a basis $b_n(x)$, the matrix A is defined as $A_{mn} = (b_m, Pb_n)$. Therefore, for any \mathbf{c} , the product $\mathbf{c} \cdot A\mathbf{c} = \sum_{m,n} (c_m b_m, Pc_n b_n) = (u, Pu)$ where $u(x) = \sum_n c_n b_n(x)$. If $\mathbf{c} \neq 0$ then $u \neq 0$ because we always require our basis functions to be linearly independent, and thus (u, Pu) > 0 by assumption, and therefore $\mathbf{c} \cdot A\mathbf{c} > 0$ and A is positive-definite. Q.E.D.

Problem 2: Galerkin FEM

You will implement a Galerkin finite-element method, with piecewise linear elements, for the Schrodinger eigen-equation in 1d:

$$\left[-\frac{d^2}{dx^2} + V(x)\right]\psi(x) = E\psi(x)$$

with a given potential V(x) and for an unknown eigenvalue E and eigenfunction $\psi(x)$. As usual, we'll use periodic boundary conditions $\psi(x+2) = \psi(x)$ and only solve for $\psi(x)$ in $x \in [-1, 1]$.

As in class, we will approximate $\psi(x)$ by its value c_n at N points x_n (n = 1, 2, ..., N) and linearly interpolate in between.

Our basis functions are, as in class, the "tent" functions $b_n(x)$, which = 1 at x_n and = 0 at other $x_{m \neq n}$, linearly interpolated in between x_n and $x_{n\pm 1}$. The periodic boundary conditions simply mean that $c_{N+1} = c_1$ for $x_{N+1} = x_1 + 2$. We define $\Delta x_n = x_{n+1} - x_n$ as in class.

(a) By definition, we have $B_{mn} = (b_m, b_n)$ and $A_{mn} = (b_m, [-\frac{d^2}{dx^2} + V(x)]b_n)$. However, we'd like to make this a bit more explicit and do some of the integrals analytically. To start with, let's evaluate B:

$$B_{nn} = \int b_n^2 dx = (\Delta x_{n-1} + \Delta x_n)/3,$$

since in each Δx interval the integral looks like $\int_0^{\Delta x} (x/\Delta x)^2 dx$. The off-diagonal elements are only non-zero for $B_{n,n\pm 1}$, and come from an integral of the form $\int_0^{\Delta x} x(\Delta x - x)/\Delta x^2 dx$, giving

$$B_{n,n+1} = \Delta x_n/6$$

$$B_{n,n-1} = \Delta x_{n-1}/6.$$

 A_{mn} can be split into two pieces: $A_{mn} = K_{mn} + V_{mn}$ where K is the "kinetic" energy from the $-\frac{d^2}{dx^2}$ and V is the potential energy from the V(x). K_{mn} we evaluated in class for Poisson's equation (with opposite sign), and is:

$$K_{mn} = \begin{cases} 0 & m \neq n, n \pm 1 \\ \frac{1}{\Delta x_{m-1}} + \frac{1}{\Delta x_m} & m = n \\ -\frac{1}{\Delta x_m} & m = n - 1 \\ -\frac{1}{\Delta x_{m-1}} & m = n + 1 \end{cases}$$

Finally, the V_{mn} terms will involve integrals over V(x), which will have to be performed numerically in general:

$$V_{mn} = \int b_m(x)V(x)b_n(x)dx$$

which we can make more explicit by breaking up the integral into Δx chunks. Let

$$P_n = \int_0^{\Delta x_n} V(x+x_n) \left(\frac{x}{\Delta x_n}\right)^2 dx,$$
$$M_n = \int_0^{\Delta x_n} V(x+x_n) \left(\frac{\Delta x_n - x}{\Delta x_n}\right)^2 dx,$$
$$C_n = \int_0^{\Delta x_n} V(x+x_n) \frac{x(\Delta x_n - x)}{\Delta x_n^2} dx.$$

Then:

$$V_{mn} = \begin{cases} 0 & m \neq n, n \pm 1 \\ P_{m-1} + M_m & m = n \\ C_m & m = n - 1 \\ C_{m-1} & m = n + 1 \end{cases}$$

Note that these integrals are properly set up for Gaussian quadrature if V(x) is smooth, since we have broken them up into pieces with smooth integrands.

One more note: because of the periodic boundary conditions, we need to set $A_{1,N} = A_{1,0}$ and $A_{N,1} = A_{N,N+1}$.

(b) See the Matlab files posted on the web site. Note that in addition to schrodinger_galerkin, I also implemented a schrodinger_galerkin_sparse function that does the same thing but using Matlab's spdiags function to exploit the

Figure 1: Wavefunctions $\psi(x)$ for four lowest eigenvalues, computed with a uniform grid for N = 100. (Note that the normalization of ψ is arbitrary.)

sparsity of the matrix and the **eigs** function to use an iterative method to just find a few eigenvalues (it uses the Arnoldi algorithm I believe). This way I can calculate the solution for much larger N values if need be.

- (c) Here we computed the solutions for N = 100:
 - (i) For uniform spacing, my lowest four E were -35.1923, -3.7363, 24.1334, and 42.6923. The corresponding eigenfunctions are shown in figure. 1.
 - (ii) In order to choose $\rho(x)$ in a reasonable way (not necessarily the best way), I tried to mimic what a "real" adaptivegrid solver would likely do: I looked at the residual of the solution and changed the grid density to try to equalize the residual everywhere. In particular, I calculated the residual for the N = 100 uniform grid as $\mathbf{r} =$ $A\mathbf{c}_0 - EB\mathbf{c}_0$ where \mathbf{c}_0 is the "exact" solution on the same grid (interpolated from $N = 8000)^1$ —in particular, we'll use the residual for the lowest band since that's what we want to compute

Figure 2: Residual function $\sqrt{|r(x)|}$ (blue dots), and a simplified interpolated envelope (red circles/lines) that we'll use for $\rho(x) \sim 1/\sqrt{|r(x)|}$.

below. Now, if we believe that this scheme is quadratically accurate, then in order to cut the residual by 4 we should double the resolution. Thus, if we suppose that we want to equalize the residual everywhere, this would argue for using $\rho(x) \sim 1/\sqrt{|r(x)|}$ where r(x) is the residual function, suitably interpolated from \mathbf{r} . The residual \mathbf{r} is plotted in figure 2; since it is kind of "bumpy" we'll just use an r(x) formed by interpolating an upper-bound envelope of \mathbf{r} , as shown by the straight red lines in the figure. Using this $\rho(x)$ and N = 100 (via the makegrid function supplied on the web site), I get eigenvalues E of -35.1944, -3.7364, 24.1668, and 42.7061. The $\psi(x)$ plots are indistinguishable and are therefore not shown.

(d) The error ΔE_N for N = 32, 64, 128, 256, 512is plotted in figure 3. Both are clearly quadratic, and the $\rho(x)$ helps slightly (the error is reduced by about 1.4). Darn. Fitting the last two points, it seems that $\Delta E_N \approx 42N^{-1.9993}$ for $\rho(x)$. For reference, the "exact" value of E (as computed by a uniform grid for N = 8000) should be -35.1999808. A table of our data follows:

 $^{^{1}}$ A more realistic adaptive-grid code would normally estimate the residual by comparing with the solution at a *coarser* resolution.

Figure 3: Error ΔE_N vs. N for a uniform grid and the $\rho(x)$ grid we selected, along with a quadratic $1/N^2$ line for comparison. Both are quadratic, and our $\rho(x)$ helps slightly but not much.

N	E_N	ΔE_N
32	-35.146211	0.04023
64	-35.186436	0.010157
128	-35.196592	0.0254
256	-35.199134	0.000636
512	-35.199770	0.000159

Problem 3: Orthogonal polynomials

Let x_n (n = 1, ..., N) be the roots of the orthogonal polynomial $p_N(x)$, which we showed must lie in (a, b). Suppose that the k-th root is repeated, with multiplicity M > 1; from this, we will prove a contradiction similar to the proof in class. In particular, form the new polynomial $S(x) = p_N(x)/(x - x_k)^L$, where L = M if M is even and L = M - 1 if M is odd. Clearly, S(x)has smaller degree than $p_N(x)$ since L > 0, and therefore we have zero inner product $(S, p_N) = 0$

However, it must also be the case that S(x) has the same sign as $p_N(x)$ everywhere. If M is even, then $p_N(x)$ does not change sign at x_k (which is an extremum), and neither does S(x) since L = M (we removed the x_k root entirely). If M is odd, then $p_N(x)$ changes sign at x_k and so does S(x) (since L = M-1 and thus S(x) contains x_k with multiplicity 1). All the other sign changes are the same since the other roots were unchanged. Therefore, we must have a positive

inner product $(S, p_N) > 0$, which contradicts the orthogonality above. Q.E.D.