18.336 Problem Set 3

Due Thursday, 23 March 2006. This is the last problem set before the mid-term on Thurs. Apr. 6.

Problem 1: Staggered-grid Leap-frog

Take the two-component wave equation $u_t = bv_x - \sigma u$, $v_t = cu_x - \sigma u$, including the PML dissipation coefficient σ , where b > 0, c > 0, and $\sigma \ge 0$ are constants. Consider the staggered-grid leap-frog scheme:

$$\frac{u_m^{n+1} - u_m^n}{\Delta t} = b \frac{v_{m+1/2}^{n+1/2} - v_{m-1/2}^{n+1/2}}{\Delta x} - \sigma \frac{u_m^{n+1} + u_m^n}{2}$$

$$\frac{v_{m+1/2}^{n+3/2} - v_{m+1/2}^{n+1/2}}{\Delta t} = c \frac{u_{m+1}^{n+1} - u_m^{n+1}}{\Delta x} - \sigma \frac{v_{m+1/2}^{n+3/2} + v_{m+1/2}^{n+1/2}}{2}$$

(a) Apply a Von-Neumann analysis for $\sigma=0$ to derive the CFL stability condition for this problem. You should get a 2×2 eigenproblem via the product of two 2×2 matrices, by writing:

$$\left(\begin{array}{c} \hat{u}^{n+1} \\ \hat{v}^{n+3/2} \end{array}\right) = \left(\begin{array}{c} ? & ? \\ ? & ? \end{array}\right) \left(\begin{array}{c} \hat{u}^{n+1} \\ \hat{v}^{n+1/2} \end{array}\right) = \left(\begin{array}{c} ? & ? \\ ? & ? \end{array}\right) \left(\begin{array}{c} ? & ? \\ ? & ? \end{array}\right) \left(\begin{array}{c} \hat{u}^{n} \\ \hat{v}^{n+1/2} \end{array}\right)$$

You needn't bother to analyze the defective case of two equal eigenvalues.

- (b) Show that your CFL condition from (a) is a sufficient condition for stability with any $\sigma > 0$.
- (c) For $\sigma = 0$, compute and plot the phase and group velocities (for several values of $\sqrt{bc}\lambda$) that you obtain in this scheme, by plugging in $u = e^{i(\theta m \phi n)}$, $v = Ae^{i(\theta m \phi n)}$, and solving for A and $\phi(\theta)$ ($\omega \Delta t = \phi$, $\beta \Delta x = \theta$).

Problem 2: PML, Matlab, and You

For this problem, you are going to implement the staggered leap-frog scheme, above, in Matlab, with periodic boundary conditions and PML boundary regions. Use the computational domain $x \in [0,20]$ with x=0 and x=20 being equivalent. Use b=c=1 everywhere, and $\sigma(x) \neq 0$ only in [0,1] (i.e. a PML region of thickness L=1 at one end). Furthermore, use an initial condition $u_m^0 = v_m^{1/2} = 0$. Use $\Delta x = 0.1$ and $\lambda = 0.9$.

In order to start a wave moving, we will add a *source* term s(x,t) to the u_t equation: $u_t = bv_x - \sigma u + s(x,t)$. In particular, you should use a Gaussian pulse at a single point x = 10:

$$s(x,t) = \delta(x-10) \cdot e^{-(t-5)^2} \sin(5(t-5))$$

where to implement the $\delta(x-10)$ delta function in the discrete scheme, just add the source at a single m with amplitude multiplied by $1/\Delta x$. (Start all simulations at t=0, i.e. assume s(x,t<0)=0.) This will produce two pulses starting at x=10: one travelling right and one travelling left. For this problem, I used the pset2prob2.m file to implement the leap-frog scheme, where this file is posted on the web site.

(a) First, use $\sigma = 0$ everywhere. Compute where the *center* of the *right*-travelling u(x,t) pulse is at t = 10. Now, predict where its center should be at t = 510 from your group-velocity calculation in problem 1. Compare this prediction to your simulation.

- (b) Now, set σ to a constant σ_0 for x < 1 and $\sigma = 0$ otherwise. Predict the σ_0 that, for the exact PDE, would attenuate waves travelling through the PML by 10^{-4} in amplitude. Now, simulate it and find the actual factor by which the pulses are attenuated after they pass though and/or reflect from the PML, at t = 30.
- (c) Now, set σ to a quadratic function $\sigma(x) = \sigma_2 x^2$ for $x \in [0, \frac{1}{2}]$, $\sigma(x) = \sigma_2 (1-x)^2$ for $x \in (\frac{1}{2}, 1)$, and $\sigma = 0$ elsewhere. Again, predict the constant σ_2 so that in the exact PDE waves would be attenuated by 10^{-4} . Again compare this to what you actually get at t = 30.

Attach plots, etcetera, as necessary, in order to show the reader what you did.

Hint: store u_m^n and $v_{m+1/2}^{n+1/2}$ as two equal-length vectors $\mathbf{u}(\mathbf{m})$ and $\mathbf{v}(\mathbf{m})$ in Matlab, corresponding to $x=0,\Delta x,\cdots,20-\Delta x$ and $x=\Delta x/2,3\Delta x/2,\cdots,20-\Delta x/2$, respectively. The leap-frog update will then consist of two lines of Matlab code to update u and then v, where the space derivatives v_x and u_x are of the form $(\mathbf{v}-[\mathbf{v}(\mathbf{end}),\mathbf{v}(1:\mathbf{end-1})])/\mathbf{dx}$ and $([\mathbf{u}(2:\mathbf{end}),\mathbf{u}(1)]-\mathbf{u})/\mathbf{dx}$ respectively.

Problem 3: Diffusion

Solve the diffusion/heat equation $u_t = bu_{xx}$ on $-1 \le x \le 1$ with periodic boundaries, b = 1, and initial data

$$u(x,0) = \begin{cases} 1 & \text{if } |x| < \frac{1}{2} \\ \frac{1}{2} & \text{if } |x| = \frac{1}{2} \\ 0 & \text{if } |x| > \frac{1}{2}. \end{cases}$$

Solve up to $t = \frac{1}{2}$. The exact solution is given by

$$u(x,t) = \frac{1}{2} + 2\sum_{\ell=0}^{\infty} (-1)^{\ell} \frac{\cos \pi (2\ell+1)x}{\pi (2\ell+1)} e^{-\pi^2 (2\ell+1)^2 t}.$$

Use the Crank-Nicolson scheme

$$\frac{u_m^{n+1} - u_m^n}{\Delta t} = \frac{b}{2} \left(\frac{u_{m+1}^{n+1} - 2u_m^{n+1} + u_{m-1}^{n+1}}{\Delta x^2} + \frac{u_{m+1}^n - 2u_m^n + u_{m-1}^n}{\Delta x^2} \right)$$

with $\Delta x = 0.05$.

- (a) Compare the accuracy when $\mu = 1$ versus $\mu = 10$.
- (b) Demonstrate that when $\lambda = \Delta x/\Delta t$ is constant, the error in the solution does not decrease with Δx when measured in the L_{∞} norm, but it does decrease in the L_2 norm.