
18.336 Problem Set 1

Due Tuesday, 21 February 2006.

Problem 1: Trigonometric interpo-

lation polynomials

You are given a function f(xn) = fn at N points
xn = 2π

N n, n = 0, · · · , N − 1, and you construct
the trigonometric interpolation polynomial

f(x) =
N−1∑
k=0

ckeikx

via the DFT. We showed in class that one would
get the same coe�cient ck if you replace any
eikx term with ei(k+`kN)x for any integer `k (we
showed for `k = 1, but other values follow by
induction). This means that there are actually
many possible trigonometric interpolations with
the same ck coe�cients passing through the same
fn.
(a) Assume N to be odd for simplicity. Show

that the unique choice of integer `k's that min-

imizes the mean-square slope 1
2π

∫ 2π

0
|f ′(x)|2dx

(for arbitrary fn) is the �symmetric� polynomial:

f(x) =
(N−1)/2∑

k=0

ckeikx +
N−1∑

k=(N+1)/2

ckei(k−N)x

(b) Suppose that the fn values are real num-
bers. We would like the interpolated f(x) to be
real as well for all x ∈ [0, 2π). Show that the
above �symmetric� polynomial satis�es this (i.e.
real f(x) for arbitrary real fn). Is it the unique
polynomial with real f(x)?

Problem 2: Solving Poisson's equa-

tion

Here, you will use Matlab to explore the solution
of Poisson's equation φ′′(x) = ρ(x) with periodic
boundary conditions on x ∈ [0, 2π) via spectral
methods and FFTs. In particular, the following
Matlab code solves for φ(x) given a �sawtooth�
function ρ(x) = x for 0 ≤ x < π and ρ(x) =
x − 2π for π < x < 2π using N = 100 points to
get an approximate solution φN (x):

N=100;

x = linspace(0,2*pi, N+1); x = x(1:end-1);

rho = x .* (x < pi) + (x - 2*pi) .* (x > pi); rho(N/2+1)=0;

k = [ 0:N/2-1, -N/2:-1 ]; k(1) = 1;

phi = ifft(- fft(rho) ./ k.^2);

(The k(1)=1 command is a hack to avoid divid-
ing zero by zero when we divide by k2.)
(a) Show by a simple �nite-di�erence evalu-

ation of φ′′N (x) (applying Matlab's �di�� com-
mand twice to �phi� and scaling by 1/∆x2) that
φ′′N (x) ≈ ρ(x).
(b) Estimate the error by repeating the calcu-

lation for 2N points to get φ2N (x), and compute
the root-mean-square di�erence

∆N ≡

√√√√ 1
N

N∑
n=0

|φN (
2π

N
n)− φ2N (

2π

N
n)|2

Compute ∆N for a sequence of N values from
N = 10 to N = 10000 and plot ∆N vs. N on a
log-log scale. You should get a power-law depen-
dence (a straight line). What is the exponent?

Problem 3: Fast Fourier Transforms

Consider the Cooley-Tukey decimation-in-time
(DIT) radix-2 FFT algorithm applied to com-
pute the DFT of length N = 2m. As we showed
in class, this recursively decomposes the prob-
lem into two DFTs of length N/2 of the even-
and odd-indexed inputs, respectively.
(a) Assume that the inputs are complex num-

bers, and that a complex addition takes 2 real
additions and a general complex multiplication
takes 4 real multiplications and 2 real additions,
and that all twiddle factors (cosine and sine val-
ues) are precomputed. The exact count of real
adds+multiplies is of the form # · N log2 N +
O(N). Show what # is. (Count multiplications
by ±1 and ±i as free, or equivalently subtraction
counts as addition.)
(b) Suppose that the inputs are purely real,

in which case the outputs ck have the symme-
try cN−k = c∗k. Show that, by applying radix-2
Cooley-Tukey directly to this data and tossing
out the redundant computations, we can com-
pute the DFT in (#/2) · N log2 N + O(N) real
adds+multiplies. (Numerical Recipes fans may
know that you can compute a real-input DFT
for even N by embedding it into a complex-input
DFT of length N/2. Don't use this trick here.)
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