
18.335 Problem Set 5 Solutions

Problem 1: (5+5 points)

(a) Let x and y be points such that fi(x)≤ 0 and fi(y)≤ 0. Then, for any point z=αx+(1−α)y on the line
segment connecting x and y, by convexity of fi we have fi(αx+(1−α)y)≤α fi(x)+(1−α) fi(y)≤ 0
since α and 1−α are nonnegative. Hence every point on the line segment connecting x and y is also
in the set where fi ≤ 0, hence that set is convex.

Also, note that the intersection C1 ∩C2 of convex sets C1,C2 is convex, so that the intersection of
all the fi constraints gives a convex set. That is, if x,y ∈C1∩C2, then x,y are in both C1 and C2, hence
the line connecting x and y is in both C1 and C2, hence the line is in C1∩C2, hence C1∩C2 is convex.

(b) Just finding the feasible set becomes hard in general. For example, suppose we are solving minx∈R f0(x)
subject to f1(x)≤ 0, where the feasible set is convex—in 1d, this means it is just an interval [a,b]. If
f1 were a convex function, we could find feasible points from any starting point just by going downhill
in f1, and can in fact easily find both a and b (the edges of the feasible region) by going uphill from
the minimum of f1. However, suppose f1 is instead an oscillatory, nonconvex function with many
local minima, that just happens to be ≤ 0 only in the convex set [a,b]. Finding this convex feasible
set is now hard—essentially as hard as global optimization of f1, because if you start at an arbitrary
infeasible point and go “downhill” you may just end up at an infeasible (> 0) local minimum.

Problem 2: (5+10+10 points)

(a) The problem is that, applying the adjoint method to compute dgn

d p individually for some n requires
Θ(n) work to solve n steps of the adjoint recurrence for gn. Hence doing Θ(n) work for n = 0, . . . ,N
is (summing the series) Θ(N2) for G. We would like to find a Θ(N) method that shares work between
the n’s.

(b) There are potentially several ways to derive this, but one way is to look at the individual dgn

d p recur-
rences and find a way to share computations.

Imagine we applied the adjoint method for each dgn

d p individually as in the previous step. This in-
volves solving an adjoint recurrence λ n−1 = (fn

x)
T λ n and then summing (λ i)T fi

p for i = 1 to n. That
is, it is the same recurrence and the same final summand for each n, so why can’t we just do the work
once for all n’s? The only difference is the initial conditions: for each n, the λ recurrence starts with
λ n = (gn

x)
T .

The key point is to realize that the adjoint (λ ) recurrence is linear (in λ ), even if the original x
recurrence was nonlinear. Hence, we can simply add the initial conditions to λ n (at each n) to obtain
a λ which is the sum of the solutions of the recurrences for each dgn

d p . This insight yields the new
adjoint recurrence (for G):

λ
n−1 = (fn

x)
T

λ
n +(gn−1

x )T ,

λ
N = (gN

x )
T .

Then we obtain
dG
dp

= g0
p +

N

∑
n=1

[
gn

p +(λ n)T fn
p
]
+(λ 0)T bp.

(c) See attached notebook.
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Problem 3: (5+5+5+10+5 points)
(a) Realize that the matrix analogue of the dot product aT b is trAT B = ∑i, j Ai jBi j = trBAT , so if we have

a matrix constraint and a matrix Lagrange multiplier then we include them in trace form. Hence our
Lagrangian is

L(E,λ ,Γ) = tr(WEWET )+λ
T (Eγ− r)+ trΓ(E−ET )

= tr
[
WEWET +(Eγ− r)λ T +Γ(E−ET )

]
,

where we have used the fact that λ T (Eγ−r) = tr
[
λ T (Eγ− r)

]
= tr

[
(Eγ− r)λ T

]
since a scalar equals

its trace.

(b) Discarding Θ(∆2) terms, and using trA = trAT with trAB = trBA along with the fact that W was
assumed symmetric, we obtain:

L(E +∆)−L(E)≈ tr
[
W∆WET +WEW∆

T +∆γλ
T +Γ(∆−∆

T )
]

= tr∆
T [2WEW +λγ

T +Γ
T −Γ

]
= 0 for all ∆.

Now, we have an equation of the form tr∆T X = 0 for all ∆ ∈ RN×N , which immediately implies that
X = 0, since otherwise we could choose ∆ = X and get a nonzero result. Equivalently, by comparison
with the Taylor series we see that X here is the “gradient” ∂L/∂E, and hence we set

∂L
∂E

= 2WEW +λγ
T +Γ

T −Γ = 0

to find:

E =−1
2

W−1 (
λγ

T +Γ
T −Γ

)
W−1 .

(c) Applying the constraint E = ET , we find λγT + ΓT − Γ = γλ T + Γ− ΓT , or ΓT − Γ = γλ T−λγT

2 .
Plugging this in above, we get:

E =−1
4

W−1 (
γλ

T +λγ
T )W−1 ,

which is manifestly symmetrical.

(d) Plugging this E into Eγ = r and multiplying both sides by −4W , we get

γλ
TW−1

γ +λγ
TW−1

γ =−4Wr =⇒ λ =−4Wr+ γλ TW−1γ

γTW−1γ

and hence if we take the transpose to get λ T = · · · and multiply both sides by W−1γ, we get:

λ
TW−1

γ =−
4rT γ +

(
λ TW−1γ

)
γTW−1γ

γTW−1γ
,

which we can solve for the scalar quantity λ TW−1γ:

λ
TW−1

γ =−2
rT γ

γTW−1γ
.

Then we can plug this into λ = · · · to solve for λ :

λ =−
4Wr−2γ

rT γ

γT W−1γ

γTW−1γ
=

2γγT r

(γTW−1γ)2 −
4Wr

γTW−1γ
.
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Finally, we can plug this λ into E = · · · to find E:

E =−1
2

W−1

[
γγT rγT + γrT γγT

(γTW−1γ)2 −2
WrγT + γrTW

γTW−1γ

]
W−1

=
1

γTW−1γ

[
rγ

TW−1 +W−1
γrT − γT r

γTW−1γ
W−1

γγ
TW−1

]
.

(e) If we choose W = H(n+1) and apply the secant condition W−1γ = δ , we get

E =
1

γT δ

[
rδ

T +δ rT − γT r
γT δ

δδ
T
]

which is a BFGS update for
[
H(n)

]−1
: if we plug in r = δ −

[
H(n)

]−1
γ , we immediately (after trivial

algebra) get the formula for E =
[
H(n+1)

]−1
−
[
H(n)

]−1
that was given in the problem.

3


