18.335 Problem Set 5 Solutions

Problem 1: (5+5 points)

(a) Let *x* and *y* be points such that *f_i(x)* ≤ 0 and *f_i(y)* ≤ 0. Then, for any point *z* = α*x* + (1 − α)*y* on the line segment connecting *x* and *y*, by convexity of *f_i* we have *f_i(αx* + (1 − α)*y*) ≤ α*f_i(x)* + (1 − α)*f_i(y)* ≤ 0 since α and 1 − α are nonnegative. Hence every point on the line segment connecting *x* and *y* is also in the set where *f_i* ≤ 0, hence that set is convex.

Also, note that the intersection $C_1 \cap C_2$ of convex sets C_1, C_2 is convex, so that the intersection of all the f_i constraints gives a convex set. That is, if $x, y \in C_1 \cap C_2$, then x, y are in both C_1 and C_2 , hence the line connecting x and y is in both C_1 and C_2 , hence the line is in $C_1 \cap C_2$, hence $C_1 \cap C_2$ is convex.

(b) Just *finding* the feasible set becomes hard in general. For example, suppose we are solving $\min_{x \in \mathbb{R}} f_0(x)$ subject to $f_1(x) \le 0$, where the feasible set is convex—in 1d, this means it is just an interval [a,b]. If f_1 were a convex function, we could find feasible points from *any* starting point just by going downhill in f_1 , and can in fact easily find both *a* and *b* (the edges of the feasible region) by going uphill from the minimum of f_1 . However, suppose f_1 is instead an oscillatory, nonconvex function with many local minima, that just happens to be ≤ 0 only in the convex set [a,b]. *Finding* this convex feasible set is now hard—essentially *as hard as global optimization* of f_1 , because if you start at an arbitrary infeasible point and go "downhill" you may just end up at an infeasible (> 0) local minimum.

Problem 2: (5+10+10 points)

- (a) The problem is that, applying the adjoint method to compute $\frac{dg^n}{dp}$ individually for some *n* requires $\Theta(n)$ work to solve *n* steps of the adjoint recurrence for g^n . Hence doing $\Theta(n)$ work for n = 0, ..., N is (summing the series) $\Theta(N^2)$ for *G*. We would like to find a $\Theta(N)$ method that *shares* work between the *n*'s.
- (b) There are potentially several ways to derive this, but one way is to look at the individual $\frac{dg^n}{dp}$ recurrences and find a way to share computations.

Imagine we applied the adjoint method for each $\frac{dg^n}{dp}$ individually as in the previous step. This involves solving an adjoint recurrence $\lambda^{n-1} = (\mathbf{f}_x^n)^T \lambda^n$ and then summing $(\lambda^i)^T \mathbf{f}_p^i$ for i = 1 to n. That is, it is the *same* recurrence and the *same* final summand for each n, so why can't we just do the work once for all n's? The only difference is the initial conditions: for each n, the λ recurrence starts with $\lambda^n = (g_x^n)^T$.

The key point is to realize that the adjoint (λ) recurrence is *linear* (in λ), even if the original **x** recurrence was nonlinear. Hence, we can simply *add* the initial conditions to λ^n (at each *n*) to obtain a λ which is the *sum* of the solutions of the recurrences for each $\frac{dg^n}{dp}$. This insight yields the new adjoint recurrence (for *G*):

$$\begin{split} \boldsymbol{\lambda}^{n-1} &= (\mathbf{f}_{\mathbf{x}}^n)^T \boldsymbol{\lambda}^n + (g_{\mathbf{x}}^{n-1})^T, \\ \boldsymbol{\lambda}^N &= (g_{\mathbf{x}}^N)^T. \end{split}$$

Then we obtain

$$\frac{dG}{d\mathbf{p}} = g_{\mathbf{p}}^{0} + \sum_{n=1}^{N} \left[g_{\mathbf{p}}^{n} + (\lambda^{n})^{T} \mathbf{f}_{\mathbf{p}}^{n} \right] + (\lambda^{0})^{T} \mathbf{b}_{\mathbf{p}}.$$

(c) See attached notebook.

Problem 3: (5+5+5+10+5 points)

(a) Realize that the matrix analogue of the dot product $a^T b$ is $\operatorname{tr} A^T B = \sum_{i,j} A_{ij} B_{ij} = \operatorname{tr} B A^T$, so if we have a matrix constraint and a matrix Lagrange multiplier then we include them in trace form. Hence our Lagrangian is

$$\begin{split} L(E,\lambda,\Gamma) &= \operatorname{tr}(WEWE^T) + \lambda^T(E\gamma - r) + \operatorname{tr}\Gamma(E - E^T) \\ &= \boxed{\operatorname{tr}\left[WEWE^T + (E\gamma - r)\lambda^T + \Gamma(E - E^T)\right]}, \end{split}$$

where we have used the fact that $\lambda^T (E\gamma - r) = \text{tr} [\lambda^T (E\gamma - r)] = \text{tr} [(E\gamma - r)\lambda^T]$ since a scalar equals its trace.

(b) Discarding $\Theta(\Delta^2)$ terms, and using tr $A = \text{tr}A^T$ with trAB = trBA along with the fact that W was assumed symmetric, we obtain:

$$\begin{split} L(E+\Delta) - L(E) &\approx \mathrm{tr} \left[W \Delta W E^T + W E W \Delta^T + \Delta \gamma \lambda^T + \Gamma (\Delta - \Delta^T) \right] \\ &= \mathrm{tr} \, \Delta^T \left[2 W E W + \lambda \, \gamma^T + \Gamma^T - \Gamma \right] = 0 \qquad \text{for all } \Delta. \end{split}$$

Now, we have an equation of the form $\operatorname{tr} \Delta^T X = 0$ for all $\Delta \in \mathbb{R}^{N \times N}$, which immediately implies that X = 0, since otherwise we could choose $\Delta = X$ and get a nonzero result. Equivalently, by comparison with the Taylor series we see that X here is the "gradient" $\partial L/\partial E$, and hence we set

$$\frac{\partial L}{\partial E} = 2WEW + \lambda \gamma^T + \Gamma^T - \Gamma = 0$$

to find:

$$E = -\frac{1}{2}W^{-1} \left(\lambda \gamma^T + \Gamma^T - \Gamma\right) W^{-1}$$

(c) Applying the constraint $E = E^T$, we find $\lambda \gamma^T + \Gamma^T - \Gamma = \gamma \lambda^T + \Gamma - \Gamma^T$, or $\Gamma^T - \Gamma = \frac{\gamma \lambda^T - \lambda \gamma^T}{2}$. Plugging this in above, we get:

$$E = -rac{1}{4}W^{-1}\left(\gamma\lambda^T+\lambda\gamma^T
ight)W^{-1}\,,$$

which is manifestly symmetrical.

(d) Plugging this *E* into $E\gamma = r$ and multiplying both sides by -4W, we get

$$\gamma\lambda^T W^{-1}\gamma + \lambda\gamma^T W^{-1}\gamma = -4Wr \implies \lambda = -rac{4Wr + \gamma\lambda^T W^{-1}\gamma}{\gamma^T W^{-1}\gamma}$$

and hence if we take the transpose to get $\lambda^T = \cdots$ and multiply both sides by $W^{-1}\gamma$, we get:

$$\lambda^T W^{-1} \gamma = -rac{4r^T \gamma + \left(\lambda^T W^{-1} \gamma
ight) \gamma^T W^{-1} \gamma}{\gamma^T W^{-1} \gamma},$$

which we can solve for the scalar quantity $\lambda^T W^{-1} \gamma$:

$$\lambda^T W^{-1} \gamma = -2 \frac{r^T \gamma}{\gamma^T W^{-1} \gamma}$$

Then we can plug this into $\lambda = \cdots$ to solve for λ :

$$\lambda = -\frac{4Wr - 2\gamma \frac{r' \cdot \gamma}{\gamma^T W^{-1} \gamma}}{\gamma^T W^{-1} \gamma} = \frac{2\gamma \gamma^T r}{\left(\gamma^T W^{-1} \gamma\right)^2} - \frac{4Wr}{\gamma^T W^{-1} \gamma}$$

æ

Finally, we can plug this λ into $E = \cdots$ to find E:

$$E = -\frac{1}{2}W^{-1} \left[\frac{\gamma \gamma^T r \gamma^T + \gamma r^T \gamma \gamma^T}{\left(\gamma^T W^{-1} \gamma\right)^2} - 2 \frac{W r \gamma^T + \gamma r^T W}{\gamma^T W^{-1} \gamma} \right] W^{-1}$$
$$= \frac{1}{\gamma^T W^{-1} \gamma} \left[r \gamma^T W^{-1} + W^{-1} \gamma r^T - \frac{\gamma^T r}{\gamma^T W^{-1} \gamma} W^{-1} \gamma \gamma^T W^{-1} \right]$$

(e) If we choose $W = H^{(n+1)}$ and apply the secant condition $W^{-1}\gamma = \delta$, we get

$$E = \frac{1}{\gamma^T \delta} \left[r \delta^T + \delta r^T - \frac{\gamma^T r}{\gamma^T \delta} \delta \delta^T \right]$$

which is a BFGS update for $[H^{(n)}]^{-1}$: if we plug in $r = \delta - [H^{(n)}]^{-1} \gamma$, we immediately (after trivial algebra) get the formula for $E = [H^{(n+1)}]^{-1} - [H^{(n)}]^{-1}$ that was given in the problem.