
18.335 Problem Set 4 Solutions

Problem 1: Q’s ‘R us (10+15 points)
(a) In finite precision, instead of w = A−1v, we will get w̃ = w+δw where δw =−(A+δA)−1δAw (from

the formula on page 95), where δA = O(εmachine)‖A‖ is the backwards error. [Note that we cannot
use δw ≈ −A−1δAw, which neglects the δAδw terms, because in this case δw is not small.] The
key point, however, is to show that δw is mostly parallel to q1, the eigenvector corresponding to the
smallest-magnitude eigenvalue λ1 (it is given that all other eigenvalues have magnitude≥ |λ2|� |λ1|).
Since w is also mostly parallel to q1, this will mean that w̃/‖w̃‖2 ≈ q1 ≈ w/‖w‖2.

First, exactly as in our analysis of the power method, note that w = A−1v = α1q1[1+O(λ1/λ2)],
since A−1 amplifies the q1 component of v by 1/|λ1| which is much bigger than the inverse of all the
other eigenvalues. Thus, w/‖w‖2 = q1[1+O(λ1/λ2)].

Second, if we Taylor-expand (A+ δA)−1 in powers of δA, i.e. in powers of εmachine, we obtain:1

(A+ δA)−1 = A−1−A−1δAA−1 +O(ε2
machine). Since all of the terms in this expansion are mul-

tiplied on the left by A−1, when multiplied by any vector they will again amplify the q1 component
much more than any other component. In particular, the vector δAw is a vector in a random direction
(since δA comes from roundoff and is essentially random) and hence will have some nonzero q1 com-
ponent. Thus, δw =−(A+δA)−1δAw = β1q1[1+O(λ1/λ2)] for some constant β1.

Putting these things together, we see that w̃ = (α1 + β1)q1[1 + O(λ1/λ2)], and hence w̃/‖w̃‖2 =
q1[1+O(λ1/λ2)] =

w
‖w‖2

[1+O(λ1/λ2)]. Q.E.D.

(b) Trefethen, problem 28.2:

(i) In general, ri j is nonzero (for i < j) if column i is non-orthogonal to column j. For a tridiagonal
matrix A, only columns within two columns of one another are non-orthogonal (overlapping in
the nonzero entries), so R should only be nonzero (in general) for the diagonals and for two
entries above each diagonal; i.e. ri j is nonzero only for i = j, i = j−1, and i = j−2.

Each column of the Q matrix involves a linear combination of all the previous columns, by
induction (i.e. q2uses q1, q3uses q2 and q1, q4 uses q3 and q2, q5 uses q4 and q3, and so on).
This means that an entry (i, j) of Q is zero (in general) only if ai,1: j = 0 (i.e., that entire row
of A is zero up to the j-th column). For the case of tridiagonal A, this means that Q will have
upper-Hessenberg form.

(ii) Note: In the problem, you are told that A is symmetric and tridiagonal. You must also assume
that A is real, or alternatively that A is Hermitian and tridiagonal. (This is what must be meant in
the problem, since tridiagonal matrices only arise in the QR method if the starting point is Hermi-
tian.) In contrast, if A is complex tridiagonal with AT = A, the stated result is not true (RQ is not
in general tridiagonal, as can easily be verified using a random tridiagonal complex A in Matlab).

It is sufficient to show that RQ is upper Hessenberg: since RQ = Q∗AQ and A is Hermitian,
then RQ is Hermitian and upper-Hessenberg implies tridiagonal. To show that RQ is upper-
Hessenberg, all we need is the fact that R is upper-triangular and Q is upper-Hessenberg.

Consider the (i, j) entry of RQ, which is given by ∑k ri,kqk, j. ri,k = 0 if i > k since R is up-
per triangular, and qk, j = 0 if k > j+1 since Q is upper-Hessenberg, and hence ri,kqk, j 6= 0 only

1Write (A+δA)−1 = [A(I+A−1δA)]−1 = (I+A−1δA)−1A−1 ≈ (I−A−1δA)A−1 = A−1−A−1δAA−1. Another approach is to let
B = (A+δA)−1 = B0 +B1 + · · · where Bk is the k-th order term in δA, collect terms order-by-order in I = (B0 +B1 + · · ·)(A+δA) =
B0A+(B0δA+B1A)+ · · · , and you immediately find that B0 = A−1, B1 =−B0δAA−1 =−A−1δAA−1, and so on.

1

when i≤ k≤ j+1, which is only true if i≤ j+1. Thus the (i, j) entry of RQ is zero if i > j+1
and thus RQ is upper-Hessenberg.

(iii) Obviously, if A is tridiagonal (or even just upper-Hessenberg), most of each column is already
zero—we only need to introduce one zero into each column below the diagonal. Hence, for each
column k we only need to do one 2× 2 Givens rotation or 2× 2 Householder reflection of the

k-th and (k + 1)-st rows, rotating
(
·
·

)
→
(
•
0

)
. Each 2× 2 rotation/reflection requires 6

flops (multiping a 2-component vector by a 2× 2 matrix), and we need to do it for all columns
starting from the k-th. However, actually we only need to do it for 3 columns for each k, since
from above the conversion from A to R only introduces one additional zero above each diagonal,
so most of the rotations in a given row are zero. That is, the process looks like
· ·
· · ·
· · ·
· · ·
· · ·
· ·

→

• • •
0 • •
· · ·
· · ·
· · ·
· ·

→

· · ·
0 • • •

0 • •
· · ·
· · ·
· ·

→

· · ·
0 · · ·

0 • • •
0 • •
· · ·
· ·

 ,

where • indicates the entries that change on each step. Notice that it gradually converts A to
R, with the two nonzero entries above each diagonal as explained above, and that each Givens
rotation need only operate on three columns. Hence, only O(m) flops are required, compared to
O(m3) for ordinary QR! [Getting the exact number requires more care that I won’t bother with,
since we can no longer sweep under the rug the O(m) operations required to construct the 2×2
Givens or Householder matrix, etc.]

Problem 2: (5+10 points)
Suppose A is a diagonalizable matrix with eigenvectors vk and eigenvalues λk, in decreasing order |λ1| ≥
|λ2| ≥ · · · . Recall that the power method starts with a random x and repeatedly computes x← Ax/‖Ax‖2.

(a) After many iterations of the power method, the λ1 and λ2 terms will dominate:

x≈ c1v1 + c2v2

for some c1and c2. However, this is not an eigenvector. Multiplying this by A gives λ1c1v1+λ2c2v2 =

λ1

(
c1v1 +

λ2
λ1

c2v2

)
, which is not a multiple of x and hence will be a different vector after normalizing,

meaning that it does not converge to any fixed vector.

(b) The key point is that if we look at the vectors x ≈ c1v1 + c2v2 and y ≈ λ1c1v1 + λ2c2v2 from two
subsequent iterations, then after many iterations these are linearly independent vectors that span
the two desired eigenvectors. We can then employ e.g. a Rayleigh–Ritz procedure to find v1 and v2:
use Gram–Schmidt to find an orthonormal basis q1 = x/‖x‖2 and q2 = (y−q1q∗1y)/‖· · ·‖2, form the
matrix Q = (q1,q2) and find the 2×2 matrix A2 = Q∗AQ. The eigenvalues of A2 (the Ritz values) will
then converge to the eigenvalues λ1 and λ2 and we obtain v1 and v2 (or some multiple thereof) from
the corresponding Ritz vectors. The key point is that AQ is in the span of q1 and q2 (in the limit of
many iterations so that other eigenvectors disappear), so the Ritz vectors are eigenvectors.

Of course, since we don’t know λ3 then we don’t know how many iterations to run, but we can do the
obvious convergence tests: every few iterations, find the Ritz values from the last two iterations, and
stop when these Ritz values stop changing to our desired accuracy.

Alternatively, if we form the matrix X = (x,y) from the vectors of two subsequent iterations, then

2

we know that (after many iterations) the columns of AX are in C(X) = x,y. Therefore, the problem
AX = XS, where S is a 2×2 matrix, has an exact solution S. If we then diagonalize S = ZΛZ−1 and
multiply both sizes by Z, we obtain AXZ = XZΛ, and hence the columns of XZ are eigenvectors of A
and the eigenvalues diagΛ of S are the eigenvalues λ1 and λ2 of A. However, this is computationally
equivalent to the Rayleigh–Ritz procedure above, since to solve AX = XS for S we would first do a QR
factorization X = QR, and then solve the normal equations X∗XS = X∗AX via RS = Q∗AQR = A2R.
Thus, S = R−1A2R: the S and A2 eigenproblems are similar; in exact arithmetic, the two approaches
will give exactly the same eigenvalues and exactly the same Ritz vectors.

[As yet another alternative, we could write AXZ = XZΛ as above, and then turn it into (X∗AX)Z =
(X∗X)ZΛ, which is a 2×2 generalized eigenvalue problem, or (X∗X)−1(X∗AX)Z = ZΛ, which is an
ordinary 2×2 eigenproblem.]

Problem 3 (5+5+5+5+5 pts):
Trefethen, problem 33.2:

(a) In this case, the qn+1 vector is multiplied by a zero row in H̃n, and we can simplify 33.13 to AQn =
QnHn. If we consider the full Hessenberg reduction, H = Q∗AQ, it must have a “block Schur” form:

H =

(
Hn B
0 H ′

)
,

where H ′ is an (m− n)× (m− n) upper-Hessenberg matrix and B ∈ Cn×(m−n). (It is not necessarily
the case that B = 0; this is only true if A is Hermitian.)

(b) Qn is a basis for Kn, so any vector x ∈Kn can be written as x = Qny for some y ∈ Cn. Hence, from
above, Ax = AQny = QnHny = Qn(Hny) ∈Kn. Q.E.D.

(c) The (n+1) basis vector, Anb, is equal to A(An−1b) where An−1b ∈Kn. Hence, from above, Anb ∈Kn
and thus Kn+1 = Kn. By induction, K` = Kn for `≥ n.

(d) If Hny = λy, then AQny = QnHny = λQny, and hence λ is an eigenvalue of A with eigenvector Qny.

(e) If A is nonsingular, then Hn is nonsingular (if it had a zero eigenvalue, A would too from above).
Hence, noting that b is proportional to the first column of Qn, we have: x = A−1b = A−1Qne1‖b‖ =
A−1QnHnH−1

n e1‖b‖= A−1AQnH−1
n e1‖b‖= QnH−1

n e1‖b‖ ∈Kn. Q.E.D.

3

