18.335 Problem Set 4

Due Monday, 30 March 2015.

Problem 1: Q's 'R us

- (a) Trefethen, problem 27.5
- (b) Trefethen, problem 28.2

Problem 2: Power method

Suppose *A* is a diagonalizable matrix with eigenvectors \mathbf{v}_k and eigenvalues λ_k , in decreasing order $|\lambda_1| \ge |\lambda_2| \ge \cdots$. Recall that the power method starts with a random \mathbf{x} and repeatedly computes $\mathbf{x} \leftarrow A\mathbf{x}/||A\mathbf{x}||_2$.

- (a) Suppose $|\lambda_1| = |\lambda_2| > |\lambda_3|$, but $\lambda_1 \neq \lambda_2$. Explain why the power method will not in general converge.
- (b) Give a *simple* fix to obtain λ₁ and λ₂ and v₁ and v₂ from the power method or some small modification thereof. (No fair going to some much more complicated/expensive algorithm like inverse iteration, Arnoldi, QR, or simultaneous iteration!) In particular, show that you can solve a 2 × 2 Ritz-like eigenproblem to estimate both eigensolutions after enough power-method iterations.

Problem 3: Arnoldi

Trefethen, problem 33.2.