
18.335 Problem Set 2 Solutions

Problem 1: (14+(10+5) points)

(a) Trefethen, exercise 15.1. In the following, I abbreviate εmachine = εm, and I use the fact
(which follows trivially from the definition of continuity) that we can replace any Lipshitz-
continuous g(O(ε)) with g(0) + g′(0)O(ε). I also assume that fl(x) is deterministic—by a
stretch of Trefethen’s definitions, it could conceivably be nondeterministic in which case one
of the answers changes as noted below, but this seems crazy to me (and doesn’t correspond
to any real machine). Note also that, at the end of lecture 13, Trefethen points out that the
same axioms hold for complex floating-point arithmetic as for real floating-point arithmetic
(possibly with εm increased by a constant factor), so we don’t need to do anything special
here for C vs. R.

(i) Backward stable. x⊕x = fl(x)⊕ fl(x) = [x(1 + ε1) +x(1 + ε1)](1 + ε2) = 2x̃ for |εi| ≤ εm
and x̃ = x(1 + ε1 + ε2 + 2ε1ε2) = x[1 +O(εm)].

(ii) Backward stable. x⊗ x = fl(x)⊗ fl(x) = [x(1 + ε1)× x(1 + ε1)](1 + ε2) = x̃2 for |εi| ≤ εm
and x̃ = x(1 + ε1)

√
1 + ε2 = x[1 +O(εm)].

(iii) Stable but not backwards stable. x � x = [fl(x)/ fl(x)](1 + ε) = 1 + ε (not including
x = 0 or ∞, which give NaN). This is actually forwards stable, but there is no x̃ such
that x̃/x̃ 6= 1 so it is not backwards stable. (Under the stronger assumption of correctly
rounded arithmetic, this will give exactly 1, however.)

(iv) Backwards stable. x	x = [fl(x)−fl(x)](1 + ε) = 0. This is the correct answer for x̃ = x.
(In the crazy case where fl is not deterministic, then it might give a nonzero answer, in
which case it is unstable.)

(v) Unstable. It is definitely not backwards stable, because there is no data (and hence
no way to choose x̃ to match the output). To be stable, it would have to be forwards
stable, but it isn’t because the errors decrease more slowly than O(εm). More explicitly,
1 ⊕ 1

2 ⊕
1
6 ⊕ · · · summed from left to right will give ((1 + 1

2 )(1 + ε1) + 1
6 )(1 + ε2) · · · =

e + 3
2ε1 + 10

6 ε2 + · · · dropping terms of O(ε2), where the coefficients of the εk factors
converge to e. The number of terms is n where n satisfies n! ≈ 1/εm, which is a function
that grows very slowly with 1/εm, and hence the error from the additions alone is bounded
above by ≈ nεm. The key point is that the errors grow at least as fast as nεm (not even
counting errors from truncation of the series, approximation of 1/k!, etcetera), which is
not O(εm) because n grows slowly with decreasing εm.

(vi) Stable. As in (e), it is not backwards stable, so the only thing is to check forwards
stability. Again, there will be n terms in the series, where n is a slowly growing function
of 1/εm (n! ≈ 1/εm). However, the summation errors no longer grow as n. From right
to left, we are summing 1

n! ⊕
1

(n−1)! ⊕ · · · ⊕ 1. But this gives (( 1
n! + 1

(n−1)! )(1 + εn−1) +
1

(n−2)! )(1 + εn−2) · · · ,and the linear terms in the εk are then bounded by∣∣∣∣∣∣
n−1∑
k=1

εk

n∑
j=k

1

j!

∣∣∣∣∣∣ ≤ εm
n−1∑
k=1

n∑
j=k

1

j!
= εm

n− 1

n!
+

n−1∑
j=1

j

j!

 ≈ εme = O(εm).

The key point is that the coefficients of the εk coefficients grow smaller and smaller
with k, rather than approaching e as for left-to-right summation, and the sum of the
coefficients converges. The truncation error is of O(εm), and we assume 1/k! can also be
calculated to within O(εm), e.g. via Stirling’s approximation for large k, so the overall
error is O(εm) and the algorithm is forwards stable.
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(vii) Forwards stable. Not backwards stable since no data, but what about forwards stability?
Supposing sin(x) is computed in a stable manner, then s̃in(x) = sin(x+ δ) · [1 +O(εm)]

for |δ| = |x|O(εm). It follows that, in the vicinity of x = π, the s̃in function can only
change sign within |δ| = πO(εm) of x = π. Hence, checking for s̃in(x) ⊗ s̃in(x′) ≤ 0,
where x′ is the floating-point successor to x (nextfloat(x) in Julia) yields π[1+O(εm)],
a forwards-stable result.

(b) Trefethen, exercise 16.1. Note that we are free to switch norms as needed, by norm equivalence.
Notation: the floating-point algorithm for computing f(A) = QA will be denoted f̃(A) =

Q̃A; I will assume that we simply use the obvious three-loop algorithm, i.e. computing the
row–column dot products with in-order (“recursive”) summation, allowing us to re-use the
summation error analysis from pset 1.

(i) We will proceed by induction on k: first, we will prove the base case, that multiplying
A by a single Q is backwards stable, and then we will do the inductive step (assume it
is true for k, prove it for k + 1).

First, the base case: we need to find a δA with ‖δA‖ = ‖A‖O(εmachine) such that
Q̃A = Q(A+ δA). Since ‖δA‖ = ‖Q∗Q̃A−A‖ = ‖Q(Q∗Q̃A−A)‖ = ‖Q̃A−QA‖ in the
L2 norm, however, this is equivalent to showing ‖Q̃A − QA‖ = ‖A‖O(εmachine); that
is, we can look at the forwards error, which is a bit easier. It is sufficient to look at the
error in the ij-th element of QA, i.e. the error in computing

∑
k qikakj . Assuming we

do this sum by a straightforward loop, the analysis is exactly the same as in problem 2,
except that there is an additional (1 + ε) factor in each term for the error in the product
qikakj [or (1 + 2ε) if we include the rounding of qik to q̃ik = fl(qik)]. Hence, the error in
the ij-th element is bounded by mO(εmachine)

∑
k |qikakj |, and (using the unitarity of

Q, which implies that |qik| ≤ 1) this in turn is bounded by mO(εmachine)
∑

k |akj | ≤
mO(εmachine)

∑
kj |akj | ≤ mO(εmachine)‖A‖ (since

∑
kj |akj | is just an L1 Frobenius

norm of A, which is within a constant factor of any other norm). Summing m2 of
these errors in the individual elements of QA, again using norm equivalence, we obtain
‖Q̃A − QA‖ = O(

∑
ij |(Q̃A − QA)ij |) = m3O(εmachine)‖A‖. Thus, we have proved

backwards stability for multiplying by one unitary matrix (with a overly pessimistic m3

coefficient, but that doesn’t matter here).

Now, we will show by induction that multiplying by k unitary matrices is backwards
stable. Suppose we have proved it for k, and want to prove for k + 1. That, con-
sider QQk · · ·Q1A. By assumption, Qk · · ·Q1A is backwards stable, and hence B̃ =

˜Qk · · ·Q1A = Qk · · ·Q1(A+δAk) for some ‖δAk‖ = O(εmachine)‖A‖. Also, from above,

Q̃B̃ = Q(B̃+δB̃) for some ‖δB̃‖ = O(εmachine)‖B̃‖ = ‖Qk · · ·Q1(A+δAk)‖O(εmachine) =
‖A + δAk‖O(εmachine) ≤ ‖A‖O(εmachine) + ‖δAk‖O(εmachine) = ‖A‖O(εmachine).

Hence, ˜QQk · · ·Q1A = Q̃B̃ = Q[Qk · · ·Q1(A+ δAk) + δB̃] = QQk · · ·Q1(A+ δA) where
δA = δAk + [Q∗1 · · ·Q∗k]δB̃ and ‖δA‖ ≤ ‖δAk‖+ ‖δB̃‖ = O(εmachine)‖A‖. Q.E.D.

(ii) Consider XA, where X is some rank-1 matrix xy∗ and A has rank > 1. The product
XA has rank 1 in exact arithmetic, but after floating-point errors it is unlikely that X̃A
will be exactly rank 1. Hence it is not backwards stable, because XÃ will be rank 1
regardless of Ã, and thus is 6= X̃A. (See also example 15.2 in the text.)
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Problem 2: (10+10 points)
(a) Denote the rows of A by aT1 , . . . , aTm. Consider the unit ball in the L∞ norm, the set {x ∈

Cn : ‖x‖∞ ≤ 1}. Any vector Ax in the image of this set satisfies:

‖Ax‖∞ = max
j∈1:m

|aTj x| = max
j∈1:m

∣∣∣∣∣ ∑
k∈1:n

aj,kxk

∣∣∣∣∣ ≤ max
j∈1:m

∑
k∈1:n

|aj,k| = max
j∈1:m

‖aj‖,

since |xk| ≤ 1 in the L∞ unit ball. Furthermore, this bound is achieved when xk = sign(aj,k)
where j = argmaxj ‖aj‖. Hence ‖A‖∞ = maxj ‖aj‖, corresponding to (3.10). Q.E.D.

If we look in the Julia (version 0.3 or 0.4) source code, we find that this norm is computed by
the function normInf{T}(A::AbstractMatrix{T}) in base/linalg/generic.jl, and this
function sums the absolute values of each row of A and then takes the maximum, exactly as
in (3.10).

(b) To obtain µ × ν submatrix B of the m × n matrix A by selecting a subset of the rows and
columns of A, we simply multiply A on the left and right by µ ×m and n × ν matrices as
follows:

B =

 1
1

. . .

A


1

1
. . .


where there are 1’s in the columns/rows to be selected. More precisely, if we want a subset R
of the rows of A and a subset C of the columns of A, then we compute B = DRAD

T
C , where

the “deletion matrix” for an ordered set S of indices is given by (DS)ij = 1 if j equals the i-th
element of S and (DS)ij = 0 otherwise; DR is µ×m and DC is ν × n .

From Trefethen, chapter 3, we have ‖B‖p ≤ ‖A‖p‖DR‖p‖DC‖p. So, we merely need to
show ‖DS‖p ≤ 1 and the result follows. But this is trivial: ‖DSx‖p =

[∑
i∈S |xi|p

]1/p ≤
[
∑

i |xi|p]
1/p

= ‖x‖p, so ‖DS‖p ≤ 1 and we obtain ‖B‖p ≤ ‖A‖p.

In Julia, we construct a random 10×7 A by A=randn(10,7), and an arbitrary 3×4 subset of
this matrix by B = A[[1,3,4],[2,3,5,6]]. Then norm(B) <= norm(A) (the p = 2 norm)
returns true. As a more careful test, we can also try computing thousands of such random
matrices and check that the maximum of norm(B)/norm(A) is < 1; a one-liner to do this
in Julia is maximum(Float64[let A=randn(10,7); norm(A[1:3,1:4])/norm(A); end for
i=1:10000]), which returns roughly 0.92. However, a quick check with a single matrix is
acceptable here—such numerical “spot checks” are extremely useful to catch gross errors, but
of course they aren’t a substitute for proof, only a supplement (or sometimes a suggestive
guide, if the numerical results precede the proof).

Problem 3: (10+10+10 points)

(a) Trefethen, probem 4.5. It is sufficient to show that the reduced SVD AV̂ = Û Σ̂ is real, since
the remaining columns of U and V are formed as a basis for the orthogonal complement
of the columns of Û and V̂ , and if the latter are real then their complement is obviously
also real. Furthermore, it is sufficient to show that Û can be chosen real, since (from class)
A∗ui/σi = vi for each column ui of Û and vi of Û , and A∗ is real. The columns ui are
eigenvectors of A∗A = B, which is a real-symmetric matrix, i.e. Bui = σ2

i ui. Suppose that
the ui are not real. Then the real and imaginary parts of ui are themselves eigenvectors (if
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they are nonzero) with eigenvalue σ2
i (proof: take the real and imaginary parts of Bui = σ2

i ui,
since B and σ2

i are real). Hence, taking either the real or imaginary parts of the complex ui
(whichever is nonzero) and normalizing them to unit length, we obtain a new purely real Û .
Q.E.D.1

(b) Trefethen, problem 5.2. We just need to show that, for any A ∈ Cm×n with rank < n and for
any ε > 0, we can find sequence of full-rank matrices B that eventually satisfies ‖A−B‖2 < ε.
Form the SVD A = UΣV ∗ with singular values σ1, . . . , σr where r < n is the rank of A. Let
B = U Σ̃V ∗ where Σ̃ is the same as Σ except that it has n − r additional nonzero singular
values σk>r = ε/2. From equation 5.4 in the book, ‖B − A‖2 = σr+1 = ε/2 < ε, noting that
A = Br in the notation of the book. We can then make a sequence of such matrices e.g. by
letting ε = σr2−k for k = 1, 2, . . ..

(c) Trefethen, problem 5.4. From A = UΣV ∗, recall that AV = UΣ and A∗U = V Σ. Therefore,(
A∗

A

)(
V
±U

)
=

(
±A∗U
AV

)
= ±

(
V Σ
±UΣ

)
= ±

(
V
±U

)
Σ

and hence (vi;±ui) is an eigenvector of
(

A∗

A

)
with eigenvalue ±σi. Noting that these

vectors (vi;±ui) are orthogonal by construction and only need to be divided by
√

2 to be
normalized, we immediately obtain the diagonalization(

A∗

A

)
= Q

(
+Σ

−Σ

)
Q∗

for
Q =

(
V V

+U −U

)
/
√

2.

1There is a slight wrinkle if there are repeated eigenvalues, e.g. σ1 = σ2, because the real or imaginary parts of u1
and u2 might not be orthogonal. However, taken together, the real and imaginary parts of any multiple eigenvalues
must span the same space, and hence we can find a real orthonormal basis with Gram-Schmidt or whatever.
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