
18.335 Problem Set 2
Due Monday, 16 February 2015.

Problem 1: (10 points)
The smallest integer that cannot be exactly
represented is n = βt + 1 (for base-β with a
t-digit mantissa). You might be tempted to
think that βt cannot be represented, since a
t-digit number, at first glance, only goes up
to βt − 1 (e.g. three base-10 digits can only
represent up to 999, not 1000). However, βt

can be represented by βt−1 · β1, where the β1 is
absorbed in the exponent.

In IEEE single and double precision,
β = 2 and t = 24 and 53, respec-
tively, giving 224 + 1 = 16, 777, 217 and
253 + 1 = 9, 007, 199, 254, 740, 993.

Evidence that n = 253 + 1 is not exactly
represented but that numbers less than that are
can be presented in a variety of ways. In the
pset1-solutions notebook, we check exactness
by comparing to Julia’s Int64 (built-in integer)
type, which exactly represents values up to
263 − 1.

Problem 2: (5+10+10 points)
See the pset1 solutions notebook for Julia code,
results, and explanations.

Problem 3: (10+10+10 points)
See the pset1 solutions notebook for Julia code,
results, and explanations.

Problem 4: (10+10+5 points)
(a) We can prove this by induction on n. For

n = 1, it is trivial with ε1 = 0; altere-
natively, for the case of n = 2, f̃(x) =
(0⊕ x1)⊕ x2 = x1 ⊕ x2 = (x1 + x2)(1 + ε2)
for |ε2| ≤ εmachine is a consequence of the
correct rounding of ⊕ (0 ⊕ x1 must equal
x1, and x1 ⊕ x2 must be within εmachine
of the exact result). (If we don’t assume
correct rounding, then the result is only
slightly modified by an additional 1 + ε1
factor multiplying x1.)

Now for the inductive step. Suppose
s̃n−1 =

∑n−1
i=1 xi

∏n−1
k=i (1 + εk). Then

s̃n = s̃n−1 ⊕ xn = (s̃n−1 + xn)(1 + εn)
where |εn| < εmachine is guaranteed by
floating-point addition. The result follows
by inspection: the previous terms are all
multiplied by (1 + εn), and we add a new
term xn(1 + εn).

(b) First, let us multiply out the terms:
(1 + εi) · · · (1 + εn) = 1 +

∑n
k=i εk +

(products of ε) = 1 + δi, where the prod-
ucts of εk terms are O(ε2machine), and hence
|δi| ≤

∑n
k=i |εk| + O(ε2machine) ≤ (n − i +

1)εmachine + O(ε2machine). Now e have:
f̃(x) = f(x) + (x1 + x2)δ2 +

∑n
i=3 xiδi, and

hence (by the triangle inequality):

|f̃(x)− f(x)| ≤ |x1| |δ2|+
n∑

i=2

|xi| |δi|.

But |δi| ≤ nεmachine + O(ε2machine)
for all i, and hence |f̃(x) − f(x)| ≤
nεmachine

∑n
i=1 |xi|.

Note: This does not correspond to
forwards stability, since we have only shown
that |f̃(x) − f(x)| = ‖x‖O(εmachine),
which is different from |f̃(x) − f(x)| =
|f(x)|O(εmachine)! Our O(εmachine) is
indeed uniformly convergent, however (i.e.
the constant factors are independent of x,
although they depend on n).

(c) For uniform random εk, since δi is the
sum of (n − i + 1) random variables with
variance ∼ εmachine, it follows from the
usual properties of random walks (i.e. the
central limit theorem) that the mean |δi|
has magnitude ∼

√
n− i+ 1O(εmachine) ≤√

nO(εmachine). Hence |f̃(x) − f(x)| =
O
(√
nεmachine

∑n
i=1 |xi|

)
.

Problem 5: (10+5+5+10 points)

Here you will analyze f(x) =
∑n

i=1 xi as in prob-
lem 2, but this time you will compute f̃(x) in a
different way. In particular, compute f̃(x) by
a recursive divide-and-conquer approach, recur-
sively dividing the set of values to be summed in

1

two halves and then summing the halves:

f̃(x) =

0 if n = 0

x1 if n = 1

f̃(x1:bn/2c)⊕ f̃(xbn/2c+1:n) if n > 1

,

where byc denotes the greatest integer ≤ y (i.e.
y rounded down). In exact arithmetic, this com-
putes f(x) exactly, but in floating-point arith-
metic this will have very different error charac-
teristics than the simple loop-based summation
in problem 2.

(a) Suppose n = 2m with m ≥ 1. We will first
show that

f̃(x) =

n∑
i=1

xi

m∏
k=1

(1 + εi,k)

where |εi,k| ≤ εmachine. We prove the
above relationship by induction. For n = 2
it follows from the definition of floating-
point arithmetic. Now, suppose it is true for
n and we wish to prove it for 2n. The sum of
2n number is first summing the two halves
recursively (which has the above bound for
each half since they are of length n) and
then adding the two sums, for a total result
of

f̃(x ∈ R2n) =

[
n∑

i=1

xi

m∏
k=1

(1 + εi,k) +

2n∑
i=n+1

xi

m∏
k=1

(1 + εi,k)

]
(1+ε)

for |ε| < εmachine. The result follows by
inspection, with εi,m+1 = ε.

Then, we use the result from prob-
lem 2 that

∏m
k=1(1 + εi,k) = 1 + δi with

|δi| ≤ mεmachine + O(ε2machine). Since
m = log2(n), the desired result follows
immediately.

(b) As in problem 2, our δi factor is now a sum
of random εi,k values and grows as

√
m.

That is, we expect that the average error
grows as

√
log2 nO(εmachine)

∑
i |xi|.

(c) Just enlarge the base case. Instead of
recursively dividing the problem in two
until n < 2, divide the problem in two until
n < N for some N , at which point we sum
the < N numbers with a simple loop as in
problem 2. A little arithmetic reveals that

this produces ∼ 2n/N function calls—this
is negligible compared to the n−1 additions
required as long as N is sufficiently large
(say, N = 200), and the efficiency should
be roughly that of a simple loop. (See the
pset1 Julia notebook for benchmarks and
explanations.)

Using a simple loop has error bounds
that grow as N as you showed above,
but N is just a constant, so this doesn’t
change the overall logarithmic nature
of the error growth with n. A more
careful analysis analogous to above re-
veals that the worst-case error grows
as [N + log2(n/N)]εmachine

∑
i |xi|.

Asymptotically, this is not only
log2(n)εmachine

∑
i |xi| error growth,

but with the same asymptotic constant
factor!

(d) Instead of “if (n < 2),” just do (for example)
“if (n < 200)”. See the notebook for code
and results.

2

