
18.335 Problem Set 2
Due Monday, 16 February 2015.

Problem 1: Floating point
Trefethen, probem 13.2. (For part c, you can
use Julia, which employs IEEE double preci-
sion by default. However, unlike Matlab, Julia
distinguishes between integer and floating-point
scalars. For example, 2^50 in Julia will produce
a 64-bit integer result; to get a 64-bit/double
floating-point result, do e.g. 2.0^50 instead.)

Problem 2: Quadratic blues
Suppose we are solving the quadratic equation
x2−2bx+ c = 0. The familiar quadratic formula
gives the two solutions x± = b±

√
b2 − c. Here,

we will consider the accuracy of the x− root for
|c| � b2.

(a) Using the code from the pset1 Julia note-
book posted on the web page, plot the ac-
curacy of x− = b −

√
b2 − c for b = 1 and

for a range of c values from 10−1 to 10−20.
Explain the observed inaccuracy.

(b) Propose an alternative way to compute x−
that will yield accurate results (within a fac-
tor of 10 of machine precision) in double pre-
cision. Implement your method and plot its
accuracy in Julia using a modified version of
the code in the previous part.

Problem 3: Newtonish methods
Newton’s method for a root of f(x) = 0 is to
iterate xn+1 = xn − f(xn)/f ′(xn) starting from
some initial guess x1 (which must be sufficiently
close to the root to guarantee convergence in gen-
eral). Suppose that you are also given f ′′(x), the
second derivative. In this problem, you will pro-
pose an iteration scheme that takes advantage of
this second-derivative information.

(a) Propose a Newton-like iteration that takes
advantage of f , f ′, and f ′′ (assuming f is
analytic in the neighborhood of the root).
(Hint: use a second-order Taylor approxi-
mation of f .) If you solve a quadratic equa-
tion, make sure you avoid the inaccuracy
problems that arose in problem 2 above (you
can use your solution from problem 2). (In

the event of a disaster, your method can fall
back to an ordinary Newton step.)

(b) Analyze its asymptotic convergence rate: if
x is an exact root, write xn = x(1 + δn)
as in class, and solve for δn+1 in terms of δn
assuming you are close to the root (δn � 1).

(c) Modify the Julia Newton’s-method note-
book from class to implement your method
to compute a root of f(x) = x3 − 1. In
particular start with x1 = 2, so that your
scheme should(!) converge to x = 1, and
look at the error xn − 1. Demonstrate that
it agrees with your predicted convergence
rate from the previous part. [You should
use arbitrary precision as in the notebook
from class, so that you can watch the con-
vergence rate for many digits. An approxi-
mate number of accurate digits is given by
− log10(xn − 1).]

Problem 4: Addition
This problem is about the floating-point error in-
volved in summing n numbers, i.e. in computing
the function f(x) =

∑n
i=1 xi for x ∈ Fn (F being

the set of floating-point numbers), where the sum
is done in the most obvious way, in sequence. In
pseudocode:

sum = 0
for i = 1 to n

sum = sum + xi
f(x) = sum

For analysis, it is a bit more convenient to define
the process inductively:

s0 = 0

sk = sk−1 + xk for 0 < k ≤ n,

with f(x) = sn. When we implement this in
floating-point, we get the function f̃(x) = s̃n,
where s̃k = s̃k−1⊕xk, with ⊕ denoting (correctly
rounded) floating-point addition.

(a) Show that

f̃(x) =

n∑
i=1

xi

n∏
k=i

(1 + εk),

where ε1 = 0 and where the other εk satisfy
|εk| ≤ εmachine.

1

(b) Show that the error can be bounded as:
|f̃(x) − f(x)| ≤ nεmachine

∑n
i=1 |xi| +

O(ε2machine).

(c) Suppose that the εk values are
uniformly randomly distributed in
[−εmachine,+εmachine]. Explain why
the mean error can be bounded by
|f̃(x) − f(x)| = O

(√
nεmachine

∑n
i=1 |xi|

)
.

(Hint: google “random walk”...you can
just quote standard statistical results for
random walks, no need to copy the proofs.)
This explains the “my_cumsum” results
shown in class.

Problem 5: Addition, another way
Here you will analyze f(x) =

∑n
i=1 xi as in prob-

lem 2, but this time you will compute f̃(x) in a
different way. In particular, compute f̃(x) by
a recursive divide-and-conquer approach, recur-
sively dividing the set of values to be summed in
two halves and then summing the halves:

f̃(x) =


0 if n = 0

x1 if n = 1

f̃(x1:bn/2c)⊕ f̃(xbn/2c+1:n) if n > 1

,

where byc denotes the greatest integer ≤ y (i.e.
y rounded down). In exact arithmetic, this com-
putes f(x) exactly, but in floating-point arith-
metic this will have very different error charac-
teristics than the simple loop-based summation
in problem 2.

(a) For simplicity, assume n is a power of 2
(so that the set of numbers to add divides
evenly in two at each stage of the recur-
sion). With an analysis similar to that
of problem 2, prove that |f̃(x) − f(x)| ≤
εmachine log2(n)

∑n
i=1 |xi| + O(ε2machine).

That is, show that the worst-case error
bound grows logarithmically rather than lin-
early with n!

(b) If the floating-point rounding errors are ran-
domly distributed as in problem 2, estimate
the average-case error bound.

(c) Pete R. Stunt, a Microsoft employee, com-
plains, “While doing this kind of recursion
may have nice error characteristics in the-
ory, it is ridiculous in the real world be-
cause it will be insanely slow—I’m proud

of my efficient software and can’t afford
to have a function-call overhead for every
number I want to add!” Explain to Pete
how to implement a slight variation of this
algorithm with the same logarithmic error
bounds (possibly with a worse constant fac-
tor) but roughly the same performance as a
simple loop.

(d) In the pset 1 Julia notebook, there
is a function “div2sum” that computes
f̃(x) =div2sum(x) in single precision by the
above algorithm. Modify it to not be hor-
rendously slow via your suggestion in (c),
and then plot its errors for random inputs
as a function of n with the help of the exam-
ple code in the Julia notebook (but with a
larger range of lengths n). Are your results
consistent with your error estimates above?

2

