
18.335 Midterm Solutions, Spring 2015

Problem 1: (10+20 points)
(a) If we Taylor-expand around xmin, we find f (xmin + δ) = f (xmin) + δ 2 f ′′(xmin)/2 + O(δ 3), where

the O(δ) term vanishes at a minimum. Because f̃ is forwards-stable, f̃ (xmin + δ) = f (xmin + δ)+
| f (xmin + δ)|O(ε) = f (xmin)+ | f (xmin)|O(ε)+O(δ 2) (via Taylor expansion). This means that the
roundoff-error O(ε) term can make f̃ (xmin + δ) < f (xmin) for δ ∈ O(

√
ε). Hence searching for the

minimum will only locate xmin to within O(
√

ε), and it is not stable. (Note that the only relevant
question is forwards stability, since there is no input to the exhaustive minimization procedure.)

(b) Here, we consider f (x) = Ax and fi(x) = aT
i x:

(i) The problem with the argument is that there is in general a different x̃ for each function fi,
whereas for f to be backwards stable we need f̃ (x) = f (x̃) with the same x̃ for all components.

(ii) Consider A = (1,π)T , for which f (x) = (x,πx)T . In floating-point arithmetic, f̃ (x) will always
give an output with two floating-point components, i.e. two components with a rational ratio,
and hence f̃ (x) 6= f (x̃) for any x̃.

Problem 2: (10+10+10 points)
Here, we are comparing Q̂∗b with the first n components of the (n+ 1)-st column of R̆. The two are equal
in exact arithmetic for any QR algorithm applied to the augmented matrix Ă = (A,b). To compare them
in floating-point arithmetic, for simplicity I will assume that dot products q∗b are computed with the same
algorithm as the components of matrix-vector products Q∗b. The main point of this problem is to recognize
that the augmented-matrix approach only makes a big difference for MGS in practice.

(a) In CGS, the first n components of the last column of R̆ will be q∗i b. This is identical to what is
computed by Q̂∗b, so the two will be exactly the same even in floating-point arithmetic. (Of course,
CGS is unstable, so the two methods will be equally bad.)

(b) In MGS, to get the first n components of the last column of R̆, we first compute r1,n+1 = q∗1b exactly as
in the first component of Q̂∗b, so that component will be identical. However, subsequent components
will be different (in floating-point arithmetic), because we first subtract the q1 component from b
before dotting with q2, etcetera. This will be more accurate for the purpose of solving the least-
squares problem because the floating-point loss-of-orthogonality means that Q̂∗b may not be close
to (Q̂∗Q̂)−1Q̂∗b in the presence of roundoff error; in contrast, the backwards-stability of MGS will
guarantee the backwards stability of R̂x̂ = Q̂∗b as stated (but not proved) in Trefethen. (The proof,
as I mentioned in class, proceeds by showing that MGS is exactly equivalent, even with roundoff
error, to Householder on a modified input matrix, and Householder by construction—as proved in
homework—provides a backwards-stable product of Ă by Q̆∗. You are not expected to prove this here,
however.)

(c) In Householder, we get the first n components of the last column of R̆ by multiplying b by a sequence
of Householder reflectors: I− 2vkv∗k . However, because of the way Q is stored implicitly for House-
holder (at least, for the algorithm as described in class and in Trefethen lecture 10), this is exactly
how Q̂∗b is computed from the Householder reflectors, so we will get the same thing in floating-point
arithmetic. (Note that there is a slight subtlety because Q̂ is m× n while the product of the House-
holder reflections gives the m×m matrix Q. But we would just multiply Q∗b and then take the first n
components in order to get Q̂∗b.)

[On the other hand, not all computing environments give you easy access to the implicit storage for
Q. For example, the qr(A) function in Matlab or Julia returns Q as an ordinary dense matrix, making
it somewhat preferable to use the augmented scheme if only because the explicit computation of Q is

1

unnecessarily expensive—it is still backwards stable as argued in Trefethen. However, the qrfact(A)
function in Julia returns a representation of the Householder reflectors in the “compact WY” format
(such that, when you multiply the resulting Q̂∗b in Julia, it effectively performs the reflections—this
is a more cache-friendly version of the reflector algorithm in Trefethen). NumPy also provides par-
tial support for this via the qr(A, mode=’raw’) interface. If you call LAPACK directly from C or
Fortran, of course, you have little choice but to deal with these low-level details.]

Problem 3: (10+20+10 points)
(a) If Axk = λkBxk, then x∗kAxk = λkx∗kBxk = (A∗xk)

∗xk = (Axk)
∗xk = (λkBxk)

∗xk = λkx∗kBxk (where we
have used the Hermiticity of A and B). Hence (λk−λk)x∗kBxk = 0, and since B is positive definite we
have x∗kBxk > 0, so λk = λk and λk is real. Similarly, if i 6= j and λi 6= λ j, we have x∗i Ax j = λ jx∗i Bx j =
λix∗i Bx j, and we obtain x∗i Bx j = 0. (See below for an alternate proof: we can change basis to show
that B−1A is similar to a Hermitian matrix. A third proof is to show that B−1A is “Hermitian” or
“self-adjoint” under a modified inner product 〈x,y〉B = x∗By, but we haven’t generalized the concept
of Hermiticity in this way in 18.335.)

(b) Naively, we can just apply MGS to B−1A, except that we replace x∗y dot products with x∗By (this also
means that ‖x‖2 is replaced by ‖x‖B =

√
x∗Bx). Hence we replace q j with s j (the j-th column of S).

The only problem is that this will require the Θ(m2) operation Bv j in the innermost loop, executed
Θ(m2) times, so the whole algorithm will be Θ(m4). Instead, we realize that v j = (B−1A) j = B−1a j
(where a j is the j-th column of a) and cancel this B−1 factor with the new B factor in the dot product.
In particular, let v̆ j = Bv j and s̆ j = Bs j. Then our MGS “SR” algorithm becomes, for j = 1 to n:

(i) v̆ j = a j

(ii) For i = 1 to j−1, do: ri j = s∗i v̆ j, and v̆ j← v̆ j− ri j s̆i.

(iii) Compute v j = B−1v̆ j (the best way is via Cholesky factors of B; as usual there is no need to
compute B−1 explicitly).

(iv) Compute r j j = ‖v j‖B, and s j = v j/r j j.

Alternatively, we can compute s∗i Bv j = (Bsi)
∗v j = s̆∗i v j, and work with v j rather than v̆ j. Another,

perhaps less obvious, alternative is:

(i) Compute the Cholesky factorization B = LL∗.

(ii) Compute the ordinary QR factorization (via ordinary MGS or Householder) L−1A = QR.

(iii) Let S = (L∗)−1Q = L−∗Q. Hence L−∗L−1A = (LL∗)−1A = B−1A = SR, and S satisfies S∗BS =
Q∗L−1(LL∗)L−∗Q = Q∗Q = I.

The basic reason why this Cholesky approach works is it represents a change of basis to a coordinate
system in which B = I. That is, for any vector x, let x′ = L∗x, in which case x′∗y′ = xLL∗y = x∗By. In
the new basis, B−1A becomes L∗B−1AL−∗ = L−1AL−∗ . . . which is now Hermitian in the usal sense,
so we get the results of part (a) for “free” and we can apply all our familiar linear-algebra algorithms
for Hermitian matrices. If we form the QR factorization in this basis, i.e. L−1AL−∗ = Q′R′, and then
change back to the original basis, we get B−1A= L−∗Q′R′L∗= SR where S = L−∗Q (satisfying S∗BS =
I as above) and R = R′L∗ (note that R is upper triangular). [Instead of the Cholesky factorization, we
could also write B = B1/2B1/2 and make the change of basis x′ = B1/2x; this gives analogous results,
but matrix square roots are much more expensive to compute than Cholesky.]

(c) It should converge to S→ X (the matrix of eigenvectors, in descending order of |λ |), up to some arbi-
trary scaling. If we normalized X∗BX = I (as we are entitled to do, from above), then S = XΦ where
Φ is a diagonal matrix of phase factors eiφ . The argument is essentially identical to the reasoning from
class that we used for the ordinary QR algorithm (or, equivalently, for simultaneous power iteration).

2

The j-th column of (B−1A)k is (B−1A)ke j = ∑` λ k
` c`x j, where e j = ∑` c`x j, i.e. c` = x∗jBe j (assumed

to be generically 6= 0). As k→ ∞, this is dominated by the λ k
1 term, so we get s1 ∼ x1. To get s2,

however, we first project out the s1 term, hence what remains is dominated by the λ 2k term and we
get s2 ∼ x2. Similarly for the remaining columns, giving s j ∼ xk.

Note that it is crucial that we use the B inner product here in the SR factorization, not the ordinary
QR factorization. The QR factorization would give the Schur factors of B−1A because x∗i x j 6= 0. For
example, consider the second column v2 = (B−1A)ke2 ≈ λ k

1 c1x1 +λ k
2 c2x2, with q1 = x1/‖x1‖2. When

we perform e.g. Gram-Schmidt on this column to project out the q1 component (for ordinary QR), we
take v2− q1q∗1v2 ≈ λ k

2 c2(x2− q1q∗1x2), where the λ k
1 term exactly cancels. Notice that what remains

is not proportional to x2, but also has an x1 component of magnitude ∼ x∗1x2, which is not small. In
general, the j-th column will have components of x1, . . . ,x j with similar magnitudes, and hence we
would get a Schur factorization T = Q∗AQ from Q. (This was a question on an exam from a previous
year.) Instead, by using the SR factorization, we take v2− s1s∗1Bv2 etcetera and the cross terms vanish.

[As with the QR algorithm, this procedure would fail utterly in the presence of roundoff errors, because
everything except for the λ k

1 components would be lost to roundoff as k→ ∞. But one could devise a
QR-like teration to construct the same S implicitly without forming (B−1A)k. In practice, there are a
variety of efficient algorithms for generalized eigenproblems, including the Hermitian case considered
here, and LAPACK provides good implementations. The key thing is that one should preserve the
Hermitian structure by keeping A and B around, rather than discarding it and working with B−1A. In
practice, one need not even compute B−1, e.g. in Lanczos-like algorithms for Ax = λBx.]

3

