18.335 Midterm, Spring 2015

Problem 1: (10+(10+10) points)

(a) Suppose you have a forwards-stable algorithm \(f \) to compute \(f(x) \in \mathbb{R} \) for \(x \in \mathbb{R} \), i.e. \(\| f(x) - f(x) \| = \| f \| O(\varepsilon_{\text{mach}}) \). Suppose \(f \) is bounded below and analytic (has a convergent Taylor series) everywhere; suppose it has some global minimum \(f_{\min} > 0 \) at \(x_{\min} \). Suppose that when computed in the obvious loop \(\tilde{g} \), and re-use them as needed to multiply by \(Q \) or \(Q^* \).

That is, each of the above three algorithms computes the QR factorization of \(A \)—for each of the three algorithms it is an improvement to compute \(\tilde{Q}^*b \) via that algorithm on \(\tilde{A} \) compared with computing \(\tilde{Q} \) (or its equivalent) by that algorithm and then performing the \(\tilde{Q}^*b \) multiplication?

Problem 3: (10+20+10 points)

Suppose \(A \) and \(B \) are \(m \times m \) matrices, \(A = A^* \), \(B = B^* \), and \(B \) is positive-definite. Consider the “generalized” eigenproblem of finding solutions \(x \neq 0 \) and \(\lambda \) to \(Ax = \lambda Bx \), or equivalently solve the ordinary eigenproblem \(B^{-1}Ax = \lambda x \). (In general, \(B^{-1}A \) is not
Hermitian.) Suppose that there are \(m \) distinct eigenvalues \(|\lambda_1| > |\lambda_2| > \cdots > |\lambda_m| \) and corresponding eigenvectors \(x_1, \ldots, x_m \).

(a) Show that the \(\lambda_k \) are real and that \(x_i^* B x_j = 0 \) for \(i \neq j \). (Hint: multiply both sides of \(Ax = \lambda B x \) by \(x^* \), similar to the derivation for Hermitian problems in class.)

(b) Explain how to generalize the modified Gram–Schmidt algorithm (figure 1) to compute an “SR” factorization \(B^{-1} A = S R \) where \(S^* BS = I \). (That is, the columns \(s_k \) of \(S \) form a basis for the columns of \(B^{-1} A \) as in QR, but orthogonalized so that \(s_i^* B s_j = 0 \) for \(i \neq j \) and \(= 1 \) for \(i = j \).) Make sure your algorithm still requires \(\Theta(m^3) \) operations!

(c) In exact arithmetic, what would \(S \) in the SR factorization of \((B^{-1} A)^k \) converge to as \(k \to \infty \), and why? (Assume the “generic” case where none of the eigenvectors happen to be orthogonal to the columns of \(B \).)