Cache Hit: CPU needs item in cache (fast)

Cache Miss: CPU needs item not in cache
- item loaded into cache for future use, replacing some other item

Optimal Replacement: on cache miss, loaded item replaces item that will not be needed for the longest time in the future

[more realistic scheme: **LRU Replacement** — replace least recently used item
- provably within small constant factor of optimal, but much harder to analyze]

Fully Associative: any item in memory can go anywhere in the cache
[real caches have limited associativity, which causes “unlucky” memory-access patterns to go same place in cache
...effectively shrinks cache in these cases]

Temporal Locality: same item is re-used for several computations that are close to one another in time ⇒ still in-cache ⇒ efficient

[there is also **Spatial Locality** — items close to one another in main memory are used close in time ... exploited by **Cache Lines**, TBD]

Cache Complexity: the number of cache misses $Q(n; Z)$ required for a given algorithm running on a problem of size n with cache of size Z
...usually only given as **asymptotic** result for large n, Z,
ignoring constant factors

Asymptotic Notation:
we say a function $f(n)$ is $O(g(n))$ if $g(n)$ is an **asymptotic upper bound** for $f(n)$, ignoring constant factors. Technically, if $|f(n)| < C|g(n)|$ for some constant $C>0$
for all sufficiently large n (i.e., for all $n > N$ for some N)

we say a function $f(n)$ is $\Omega(g(n))$ if $g(n)$ is an **asymptotic lower bound** for $f(n)$, ignoring constant factors. Technically, if $|f(n)| > C|g(n)|$ for some constant $C>0$
for all sufficiently large n (i.e., for all $n > N$ for some N)

we say a function $f(n)$ is $\Theta(g(n))$ if $g(n)$ is an **asymptotic tight bound** for $f(n)$, ignoring constant factors. Technically, if $f(n)$ is both $O(g(n))$ and $\Omega(g(n))$