Problem 1: Gaussian elimination
Trefethen, problem 20.4.

Problem 2: Asymptotic notation
This problem asks a few simple questions to make sure that you understand the asymptotic notations O, Ω, and Θ as defined in the handout in class, and also to make sure you are comfortable with simple proofs. (A detailed review of asymptotic notation can be found in any computer-science textbook, or on many sites online.)

(a) If $f(n)$ is $\Theta[F(n)]$ and $g(n)$ is $\Theta[G(n)]$ for nonnegative functions f, g, F, and G, prove that $f(n) + g(n)$ is $\Theta[F(n) + G(n)]$.

(b) Prove that $f(n)$ is $O[g(n)]$ if and only if $g(n)$ is $\Omega[f(n)]$. [For example, n^2 is $O(n^3)$ and n^3 is $\Omega(n^2)$.

(c) If $f(n)$ is $O[F(n)]$, prove that any function that is $O[f(n) + cF(n)]$ must also be $O[F(n)]$ for any constant $c \neq 0$—that is, if we regard $O[\cdots]$ as a set of functions, prove $O[f(n) + cF(n)] \subseteq O[F(n)]$. [For example, $O(n^2 + 3n^3) = O(n^3)$.

(d) Explain why the statement, “The running time of this algorithm is $O(n^2)$ or worse,” cannot (if taken literally) provide any information about the algorithm.

Problem 3: Caches and matrix multiplications
In class, we considered the performance and cache complexity of matrix multiplication $A = BC$, especially for square $m \times m$ matrices, and showed how to reduce the number of cache misses using various forms of blocking. In this problem, you will be comparing optimized matrix-matrix products to optimized matrix-vector products, using Julia.

(a) The code matmul_bycolumn.jl posted on the 18.335 web page computes $A = BC$ by multiplying B by each column of C individually (using Julia’s highly-optimized OpenBLAS matrix-vector product). Benchmark this: plot the flop rate for square $m \times m$ matrices as a function of m, and also benchmark Julia’s built-in matrix-matrix product and plot it too. For example, Julia code to benchmark Julia’s $m \times m$ products for m from 10 to 1000 (logarithmically spaced), storing the flop rate ($2m^3/\text{nanoseconds}$) in an array gflops and plotting the result, is:

```julia
blas_set_num_threads(1) # turn off multi-threaded BLAS for benchmarking
ms = int(logspace(1, 3, 50)) # 50 integers from $10^1$ to $10^3$
\text{gflops} = zeros(length(ms))
function doit(A,B, N) # function to benchmark for N iterations
    \text{for } i = 1:N
        C = A * B
    \text{end}
end
\text{for } i = 1:length(ms) # benchmark different matrix sizes
    m = ms[i]
```
A = rand(m,m)
B = rand(m,m)
iters = 0
t = 0.0
while t < 0.1 # run for at least 0.01 seconds
 iters = iters*2 + 1
 t = @elapsed doit(A,B, iters) # elapsed time in seconds
end
gflops[i] = 2m^3 * 1e-9 / (t/iters)
println("gflops for m=",gflops[i])
end
using PyPlot
semilogx(ms, gflops)
xlabel("matrix size m")
ylabel("GFLOPS")

(b) Compute the cache complexity (the asymptotic number of cache misses in the ideal-cache model, as in class) of an \(m \times m \) matrix-vector product implemented the “obvious” way (a sequence of row-column dot products).

(c) Propose an algorithm for matrix-vector products that obtains a better asymptotic cache complexity (or at least a better constant coefficient, e.g. going from \(\sim 3m^2 \) to \(\sim 2m^2 \), even if it is still the same \(\Theta[\cdots] \) complexity) by dividing the operation into some kind of blocks.

(d) Assuming Julia uses something like your “improved” algorithm from part (c) to do matrix-vector products, compute the cache complexity of matmul_by_column. Compare this to the cache complexity of the blocked matrix-matrix multiply from class. Does this help to explain your results from part (a)?

Problem 4: Caches and backsubstitution

In this problem, you will consider the impact of caches (again in the ideal-cache model from class) on the problem of backsubstitution: solving \(Rx = b \) for \(x \), where \(R \) is an \(m \times m \) upper-triangular matrix (such as might be obtained by Gaussian elimination). The simple algorithm you probably learned in previous linear-algebra classes (and reviewed in the book, lecture 17) is (processing the rows from bottom to top):

\[
x_m = b_m / r_{mm} \\
\text{for } j = m - 1 \text{ down to } 1 \\
x_j = (b_j - \sum_{k=j+1}^{m} r_{jk}x_k) / r_{jj}
\]

Suppose that \(X \) and \(B \) are \(m \times n \) matrices, and we want to solve \(RX = B \) for \(X \)—this is equivalent to solving \(Rx = b \) for \(n \) different right-hand sides \(b \) (the \(n \) columns of \(B \)). One way to solve the \(RX = B \) for \(X \) is to apply the standard backsubstitution algorithm, above, to each of the \(n \) columns in sequence.

(a) Give the asymptotic cache complexity \(Q(m, n; Z) \) (in asymptotic \(\Theta \) notation, ignoring constant factors) of this algorithm for solving \(RX = B \).

(b) Suppose \(m = n \). Propose an algorithm for solving \(RX = B \) that achieves a better asymptotic cache complexity (by cache-aware/blocking or cache-oblivious algorithms, your choice). Can you gain the factor of \(1/\sqrt{Z} \) savings that we showed is possible for square-matrix multiplication?