
18.335 Midterm Solutions, Fall 2013

Problem 1: GMRES (20 points)

(a) We assume A is nonsingular, in which case Anb 6= 0 (except in the trivial case b = 0, for which we
already have an exact solution x = 0 to Ax = b). Now, we are told to suppose Anb ∈Kn =⇒ Anb =

∑k<n ckAkb for some coefficients ck. Let c` denote the first nonzero coefficient (i.e. c` 6= 0 and ck = 0
for k < `; in most cases `= 0). Then Anb = ∑

n−1
k=` ckAkb implies that we can solve for the A`b term as:

A`b =
1
c`

(
Anb− ∑

`<k<n
ckAkb

)
=⇒ b = A

[
1
c`

(
An−`−1b− ∑

`<k<n
ckAk−`−1b

)]
.

But we are solving b = Ax, and by inspection

x =
1
c`

(
An−`−1b− ∑

`<k<n
ckAk−`−1b

)
∈Kn,

since 0 ≤ k− `− 1 < n (since ` < k < n) and 0 ≤ n− `− 1 < n (since 0 ≤ ` < n). But if the exact
solution x ∈Kn, then we can obtain the exact solution from Qn and we don’t need to compute qn+1.
We are done, so breakdown is a good thing.

(b) Suppose b is a linear combination of n of the eigenvectors of A. Then Akb will still be a linear combi-
nation of those eigenvectors for all k, and hence the Krylov space can never have dimension > n. So,
we must break down on the n-th step, when breakdown must occur if we try to compute qn+1.

Technically, we must find n eigenvectors with distinct eigenvalues in order for Akb to be linearly
independent for k < n, i.e. for it to break down in exactly n steps.

Problem 2: Conditioning (20 points)

The following parts can be solved independently.

(a) We want to avoid squareing the condition number of A. So, we compute the reduced QR factorization
A = Q̂R̂ (Householder is the most efficient stable way), in which case A∗A = R̂∗R̂. Since A is full-rank,
R̂ is a nonsingular n×n matrix. Hence C = (R̂−1)∗R̂−1, and Ci j = e∗i Ce j = (R̂−1ei)

∗(R̂−1e j). Since R̂
is upper-triangular, we can compute xi = R̂−1ei efficiently by solving R̂xi = ei via backsubstitution.

(b) From class, the condition number of f (x) = Ax is simply κ(x) = ‖A‖2‖x‖2/‖Ax‖2, since the Jacobian
is A. (I told you to use ‖A‖F for the norm of A, but that really applies when you have a choice of
norms, i.e. in the second part; in the condition-number formula you must use the induced norm of the
Jacobian matrix. However, the question was a bit confusing here.)

To get the condition number of f (A) = Ax, we first need to to get the Jacobian. Let’a define the
input A as a “1d” vector a of length mn:

a =


(A1,:)

T

(A2,:)
T

...
(Am,:)

T

 ,

i.e. a consists of the rows of A (transposed to column vectors), one after the other, in sequence. (i.e.,
row-major storage of A.) There are m outputs fi of Ax, each one of which dots one row of A with x.

1



Hence, in terms of a, the m× (mn) Jacobian matrix looks like

J =


xT

xT

. . .
xT

 .

Since this is block-diagonal, it is easy to figure out supz6=0
‖Jz‖
‖z‖ . Let’s write z as

z =


x1
x2
...

xm


in terms of vectors xk ∈ Cn. Note that, under the Frobenius norm, ‖A‖F = ‖z‖2. Then

‖J‖2 =
‖Jz‖2

‖z‖2
=

√
|xT x1|2 + |xT x2|2 + · · ·+ |xT xm|2

x∗1x1 + x∗2x2 + · · ·+ x∗mxm
,

which is clearly maximized when xk = αkx̄ (to maximize the dot products xT xk → |αk|2‖x‖2
2 over all

vectors xk of a given length) for some scalar αk ∈ C, giving ‖J‖2 = ‖x‖2

√
∑ |αk|2
∑ |αk|2

= ‖x‖2. Hence, the

condition number is κ(A) = ‖J‖
‖Ax‖/‖A‖ =

‖x‖2‖A‖F
‖Ax‖2

, which is almost exactly the same the condition num-
ber for f (x) = Ax above, except that we substitute ‖A‖F for ‖A‖2. Due to the equivalence of norms,
however, this means that the condition numbers differ only by at most a constant factor independent
of A or x.

(I asked you to use the Frobenius norm largely because it made it eaasier to compute the induced
norm ‖J‖2 in the second part. Otherwise you would have had to convert z back to a matrix and used
the induced L2 norm of that matrix for ‖z‖ in the denominator of the ‖J‖2 formula. It’s possible to
work this out, but it seemed like an unnecessary amout of complexity to get something that differs
only by a constant factor. The usual principle here is that, because of the equivalence of norms, we
pick whatever norm is most convenient when we are discussing conditioning.)

Problem 3: QR updating (20 points).

Suppose you are given the QR factorization A = QR of an m×n matrix A (rank n < m). Describe an efficient
O(m2 +n2) = O(m2) algorithm to compute the QR factorization of a rank-1 update to A, that is to factorize
A+uv∗ = Q′R′ for some vectors u ∈ Cm and v ∈ Cn, following these steps:

(a) (Note that this applies to the full QR factorization, where Q is an m×m unitary matrix, not to the
reduced QR factorization with an m× n Q̂!) Q′R′ = A+ uv∗ = QR+ uv∗ = Q(R+ zv∗) implies that
Qz = u or z = Q∗u. Multiplying an m×m matrix Q∗by the vector u costs Θ(m2) operations.

2



(b) The R+ zv∗ matrix looks like this:

R+ zv∗ =



× × × × ×
× × × ×
× × ×
× ×
×


+
(

zv1 zv2 · · · zvn
)
.

This means that, below the diagonal of R, the entries in every column are multiples of the same vector
z. So, if we perform Givens rotations from the bottom up to introduce zeros into the first column, this
rotation will also introduce zeros in all the columns until the diagonal is reached.

More specifically, you were asked to apply the Givens rotations that rotate z into a multiple of e1,
from the bottom up. As explained above, this will introduce zeros into each column of R+ zv∗ until
the diagonal is reached. In column k, this means it will introduce zeros until you get to the point of
rotating rows k and k+ 1. Because the (k,k) entry contains Rk,k, the Givens rotation designed for z
will no longer work, and will leave both of these rows nonzero (and similarly for rows < k). Hence,
the resulting matrix is upper Hessenberg as desired (one nonzero below each diagonal).

There is Θ(m) work required to rotate z via m− 1 Givens rotations, and Θ(n2) work required to
apply these rotations to R+ zv∗ starting from the diagonal rows. And hence Θ(m+n2) work overall;
I don’t mind if you ignore the Θ(m) term since it is negligible compared to the Θ(m2) term from part
(a). (Naively, these Givens rotations to introduce zeros into the first column will require Θ(mn) work
because of the cost of applying them to the other columns, but you don’t actually have to perform the
rotations of the other columns for rows > n since we know a priori that this will just introduce zeros.)

(c) Given upper-Hessenberg form, we just need to apply one Givens rotation to each column (to rows k
and k+1 for column k) to restore tridiagonal form. There are n columns, and on average Θ(n) work
per rotation (since the rotation has to apply to all the columns ≥ k), for Θ(n2) work overall.

(You solved a very similar problem for homework, in the context of the upper-Hessenberg GMRES
least-squares problem.)

3


