18.335 Problem Set 4

Due Friday, 26 October 2012.

Problem 1: Hessenberg

In class, we described an algorithm to find the Hes-
senberg factorization A = QHQ" of an arbitrary ma-
trix A, where H is upper-triangular plus nonzero el-
ements just below the diagonal, and H has the same
eigenvalues as A. Suppose A is Hermitian, in which
case H is Hermitian and tridiagonal. Given the Hes-
senberg factorization H, we mentioned in class that
many things become much easier, e.g. we can evalu-
ate p(z) = det(A — zI) = det(H — zI) in O(m) opera-
tions for a given z.

(a) Let B be an arbitrary m X m tridiagonal ma-
trix. Argue that detB = B, ;,udetB1.,y—1.1:m—1 —
Bm—l,mBm,m—ldetBl:m—Z,l:m—Z-- Use this re-
currence relation to write a Matlab function
evalpoly.m that evaluates p(z) in O(m) time,
given the tridiagonal H and z as arguments.
Check that your function works by comparing it
to computing det(H — zI) directly with the Mat-
lab det function. (Hint: look up formulas for
determinants in terms of cofactors or minors.)

(b) Explain how, given the tridiagonal H, we can
compute also the derivative p'(z) for a given z
in O(m) operations. (Not the coefficients of the
polynomial p/, just its value at z!). Modify your
evalpoly.m routine to return both p(z) and its
derivative p’(z). That is, your function should
look like:

[p,pderiv] = evalpoly(H,z)

...... compute p, pderiv.....

Check that your function works by comparing

your p'(z) to [p(z+ Az) — p(z — Az)]/2Az for

various z and small Az.

(c) Using your function evalpoly, implement

Newton’s method to compute some eigenval-

ues of a random real-symmetric matrix, and

compare them to those returned by Matlab’s
eig function—how many significant digits of
agreement do you get?

That is, to get a random real-symmetric A,
compute X=rand (m) ; A=X’x*X; .... then, com-
pute H=hess (A) ; to get H. Then compute the
eigenvalues with eig(A), and apply Newton’s

method starting at a few different points to
converge to some different eigenvalues.

(If you make your matrix too big, you
might encounter overflow problems in which
the determinant is bigger than the largest repre-
sentable value, and you get too. This is easily
fixed by modifying your evalpoly routine to
scale its result, but you needn’t bother. Just use
a smaller matrix, say 100 x 100.)

Problem 2: Q’s ‘R us
(a) Trefethen, problem 27.5
(b) Trefethen, problem 28.2

Reminder: final project proposals

A half-page final-project proposal is due on Octo-
ber 26 (same day as the pset!), outlining the goal and
scope of your proposed paper—this is mainly so that
I can give you feedback on whether your project is
reasonable. Problems motivated by your research are
perfectly fine, although you shouldn’t simply recycle
something you’ve already done. The only restriction
is that, since PDEs are covered in 18.336 and other
courses, I don’t want projects where the primary fo-
cus is how to discretize the PDE (e.g. no projects
on discontinuous Galerkin methods or stable time-
stepping, please). It is fine to take a discretized PDE
as input, however, and then work on solvers, precon-
ditioning, optimization, etcetera. Methods for ODEs
are also fair game (especially recent developments
that go beyond classic Runge-Kutta). One source of
ideas might be to thumb through a copy of Numerical
Recipes or a similar book and find a topic that inter-
ests you. Then go read some recent review papers on
that topic (overview books like Numerical Recipes
are not always trustworthy guides to a specific field).

You should email your final-project proposal to
me; include 18.335 final project proposal in the sub-
ject of the email. You can email the proposal to me
early if you want! Your proposal should cite a couple
of references that you will use as starting points.

See also the 18.335 web page, which answers
some common questions about final projects.



