18.335 Midterm, Fall 2012

Problem 1: (25 points)

- (a) Your friend Alyssa P. Hacker claims that the function $f(x) = \sin x$ can be computed accurately (small forward relative error) near x = 0, but not near $x = 2\pi$, despite the fact that the function is periodic in exact arithmetic. True or false? Why?
- (b) Matlab provides a function log1p(x) that computes ln(1+x). What is the point of providing such a function, as opposed to just letting the user compute ln(1+x) herself? (Hint: not performance.) Outline a possible implementation of log1p(x) [rough pseudocode is fine].
- (c) Matlab provides a function gamma(x) that computes the "Gamma" function Γ(x) = ∫₀[∞] e^{-t}t^{x-1}dt, which is a generalization of factorials, since Γ(n + 1) = n!. Matlab also provides a function gammaln(x) that computes ln[Γ(x)]. What is the point of providing a separate gammaln function? (Hint: not performance.)

Problem 2: (5+10+10 points)

Recall that a floating-point implementation $\tilde{f}(x)$ of a function f(x) (between two normed vector spaces) is said to be *backwards stable* if, for every *x*, there exists some \tilde{x} such that $\tilde{f}(x) = f(\tilde{x})$ for $||\tilde{x} - x|| =$ $||x||O(\varepsilon_{\text{machine}})$. Consider how you would apply this definition to a function f(x, y) of *two* arguments *x* and *y*. Two possibilities are:

- First: The most direct application of the original definition would be to define a single vector space on pairs v = (x, y) in the obvious way [(x₁, y₁) + (x₂, y₂) = (x₁ + x₂, y₁ + y₂) and α · (x, y) = (αx, αy)], with some norm ||(x, y)|| on pairs. Then f̃ is backwards stable if for every (x, y) there exist (x̃, ỹ) with f̃(x, y) = f(x̃, ỹ) and ||(x̃, ỹ) (x, y)|| = ||(x, y)||O(ε_{machine}).
- Second: Alternatively, we could say \tilde{f} is backwards stable if for every x, y there exist \tilde{x}, \tilde{y} with $\tilde{f}(x,y) = f(\tilde{x}, \tilde{y})$ and $||\tilde{x} x|| = ||x|| O(\varepsilon_{\text{machine}})$ and $||\tilde{y} - y|| = ||y|| O(\varepsilon_{\text{machine}})$.
- (a) Given norms ||x|| and ||y|| on x and y, give an example of a valid norm ||(x,y)|| on the vector space of pairs (x,y).

- (b) Does First \implies Second, or Second \implies First, or both, or neither? Why?
- (c) In class, we proved that summation of *n* floating-point numbers, in some sequential order, is backwards stable. Suppose we sum *m*+*n* floating point numbers *x* ∈ ℝ^m and *y* ∈ ℝⁿ by *f̃*(*x*, *y*) = *x*₁ ⊕ *x*₂ ⊕ *x*₃ ⊕ … ⊕ *x_m* ⊕ *y*₁ ⊕ *y*₂ ⊕ … ⊕ *y_n*, doing the floating-point additions (⊕) sequentially from left to right. Is this backwards stable in the First sense? In the Second sense? (No complicated proof required, but give a brief justification if true and a counterexample if false.)

Problem 3: (25 points)

Say *A* is an $m \times m$ diagonalizable matrix with eigenvectors x_1, x_2, \ldots, x_m (normalized to $||x_k||_2 = 1$ for convenience) and distinct-magnitude eigenvalues λ_k such that $|\lambda_1| > |\lambda_2| > \cdots > |\lambda_m|$. In class, we showed that *n* steps of the QR algorithm produce a matrix $A_n = Q^{(n)*}AQ^{(n)}$ where $Q^{(n)}$ is equivalent (in exact arithmetic) to QR factorizing $A^n = Q^{(n)}R^{(n)}$. This proof was general for all *A*. For the specific case of $A = A^*$ where the eigenvectors are orthonormal, we concluded that as $n \to \infty$ we obtain $Q^{(n)} \to$ eigenvectors $(x_1 \cdots x_m)$ and $A_n \to \Lambda = \text{diag}(\lambda_1, \ldots, \lambda_m)$.

Show that if $A \neq A^*$ (so that the eigenvectors x_k are no longer in generally orthogonal), the QR algorithm approaches $A_n \to T$ and $Q^{(n)} \to Q$ where $T = Q^*AQ$ is the **Schur factorization** of *A*. (Hint: show that $q_k = Q^{(n)}e_k$, the *k*-th column of $Q^{(n)}$, is in the span $\langle x_1, x_2, \ldots, x_k \rangle$ as $n \to \infty$, by considering $v_k = A^n e_k$, the *k*-th column of A^n . Similar to class, think about the power method $A^n e_k$, and what Gram-Schmidt does to this.)