18.335 Problem Set 5
Due Friday, 28 October 2011.

Problem 0:
Trefethen, problem 33.2.

Problem 1:
(a) Trefethen, 36.3. Plot the error in this eigenvalue as a function of how many Ax matrix-vector multiplies you perform (use a semilog or log-log scale as appropriate). (The files lanczos.m and A363.m posted on the web page are helpful.) Also plot the values of smallest three λ's versus the iteration, and show when ghost eigenvalues enter.

(b) Same problem, but use restarted Lanczos: after every 10 iterations of Lanczos, restart with the best Ritz vector from those 10 iterations. Again, plot the error in λ_1 vs. matrix-vector multiply count.

(c) The above questions asked for the minimum-λ eigenvalue (which may be negative). Plot what happens if, instead, you try to get the minimum-$|\lambda|$ eigenvalue by these techniques. (Aside: a better way is to use Lanczos on A^{-1}, but that requires a fast way to solve $Ax = b$ in order to multiply by A^{-1}.)

Problem 2:
Trefethen, problem 38.6. (The files SD.m and A386.m on the web page are helpful.)

Problem 3:
In problem 3 of the Fall 2008 midterm for 18.335, it was claimed that you could use the conjugate-gradient algorithm for a Hermitian positive semidefinite matrix A, with a random starting guess, to find a vector in the null space (see the midterm solutions). Demonstrate this by means of an example, in Matlab, and plot the norm of the residual vs. iteration. (You can construct a random positive-semidefinite matrix A via, for example, $B = \text{rand}(198,200)$; $A = B' * B$.)