
18.335 Midterm, Fall 2011

Problem 1: (10+15 points)

Suppose A is a diagonalizable matrix with eigenvec-
tors vk and eigenvalues λk, in decreasing order |λ1| ≥
|λ2| ≥ · · · . Recall that the power method starts with a
random x and repeatedly computes x← Ax/‖Ax‖2.

(a) Suppose |λ1| = |λ2| > |λ3|, but λ1 6= λ2. Ex-
plain why the power method will not in general
converge.

(b) Give a simple fix to obtain λ1 and λ2 and v1 and
v2 from the power method or some small mod-
ification thereof. (No fair going to some much
more complicated/expensive algorithm like in-
verse iteration, Arnoldi, QR, or simultaneous it-
eration!)

Problem 2: (25 points)

Review: We described GMRES as minimizing the
norm ‖r‖2 of the residual r = b−Ax over all x ∈Kn
where Kn = span〈b,Ab, . . . ,An−1b〉. This was done
using Arnoldi (starting with q1 = b/‖b‖2) to build up
an orthonormal basis Qn of A, where AQn = Qn+1H̃n
(H̃n being an (n + 1)× n upper-Hessenberg matrix),
in terms of which we wrote x = Qny and solved the
least-square problem miny ‖H̃ny− be1‖2 where b =
‖b‖2 and e1 = (1,0,0, . . .)T (since b = Qn+1be1).

• Suppose, after n steps, we want to restart GM-
RES. That is, we want to restart our Arnoldi
process with one vector q̃1 based (somehow) on
the solution x0 = Qny from the n-th step, and
build up a new Krylov space. What should q̃1
be, and what minimal-residual problem should
we solve on each step of the new GMRES iter-
ations, to obtain improved solutions x in some
Krylov space?

(Note: if you’re remembering implicitly restarted
Lanczos now and panicking, relax: all the complex-
ity there was to restart with a subspace of dimension
> 1, which doesn’t apply when we are restarting with
only one vector. Think simpler.)

(Note: be sure to obtain a small least-squared
problem on each step. No m×n problems! This may
screw up the first thing you try. Hint: think about
residuals.)

Problem 3: (15+10 points)
(a) The following two sub-parts can be solved inde-

pendently (you can answer the second part even
if you fail to prove the first part):

(i) Suppose A is an m×n matrix with rank n
(i.e., independent columns). Let B = A:,1:p
be the first p (1 ≤ p ≤ n) columns of A.
Show that κ(A) ≥ κ(B). (Hint: recall
that our first way of defining κ(A) was by
κ(A) =

[
maxx6=0

‖Ax‖
‖x‖

]
·
[
maxx6=0

‖x‖
‖Ax‖

]
.)

(ii) Suppose that we are doing least-square fit-
ting of a bunch of data points (contain-
ing some experimental errors) to a poly-
nomial. Does the κ(A)≥ κ(B) result from
the previous part tell you about what hap-
pens about the sensitivity to errors as you
increase the number of data points or as
you increase the degree of the polynomial,
and what does it tell you?

(b) Prove that if κ(A) = 1 then A = cQ where
Q∗Q = I and c is some scalar. (The SVD defi-
nition of κ might be easiest here: κ(A) = σmax

σmin
when A has full column rank.)

Problem 4: (8+8+9 points)
Recall that an IEEE double-precision binary floating-
point number is of the form ±s · 2e where the sig-
nificand s = 1.xxxx . . . has 53 binary digits (about
16 decimal digits, εmachine ≈ 10−16) and the expo-
nent e has 11 binary digits (e ∈ [−1022,1023] =⇒
10−308 . 2e . 10308).

(a) Computing
√

x2 + y2 by the obvious method,√
(x⊗ x)⊕ (y⊗ y) sometimes yields “∞” (Inf)

even when x and y are well within the repre-
sentable range. Propose a solution.

(b) Explain why solving x2 + 2bx + 1 = 0 for x by
the usual quadratic formula x = −b±

√
b2−1

might be very inaccurate for some b, and pro-
pose a solution.

(c) How might you compute 1−cosx accurately for
small |x|? Assume you have floating-point s̃in
and c̃os functions that compute exactly rounded
results, i.e. s̃inx = fl(sinx) and c̃osx = fl(cosx).
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